|
Hongxing Gao, Marçal Rusiñol, Dimosthenis Karatzas and Josep Llados. 2014. Fast Structural Matching for Document Image Retrieval through Spatial Databases. Document Recognition and Retrieval XXI.
Abstract: The structure of document images plays a signicant role in document analysis thus considerable eorts have been made towards extracting and understanding document structure, usually in the form of layout analysis approaches. In this paper, we rst employ Distance Transform based MSER (DTMSER) to eciently extract stable document structural elements in terms of a dendrogram of key-regions. Then a fast structural matching method is proposed to query the structure of document (dendrogram) based on a spatial database which facilitates the formulation of advanced spatial queries. The experiments demonstrate a signicant improvement in a document retrieval scenario when compared to the use of typical Bag of Words (BoW) and pyramidal BoW descriptors.
Keywords: Document image retrieval; distance transform; MSER; spatial database
|
|
|
Hongxing Gao, Marçal Rusiñol, Dimosthenis Karatzas and Josep Llados. 2014. Embedding Document Structure to Bag-of-Words through Pair-wise Stable Key-regions. 22nd International Conference on Pattern Recognition.2903–2908.
Abstract: Since the document structure carries valuable discriminative information, plenty of efforts have been made for extracting and understanding document structure among which layout analysis approaches are the most commonly used. In this paper, Distance Transform based MSER (DTMSER) is employed to efficiently extract the document structure as a dendrogram of key-regions which roughly correspond to structural elements such as characters, words and paragraphs. Inspired by the Bag
of Words (BoW) framework, we propose an efficient method for structural document matching by representing the document image as a histogram of key-region pairs encoding structural relationships.
Applied to the scenario of document image retrieval, experimental results demonstrate a remarkable improvement when comparing the proposed method with typical BoW and pyramidal BoW methods.
|
|
|
Joan M. Nuñez, Jorge Bernal, Miquel Ferrer and Fernando Vilariño. 2014. Impact of Keypoint Detection on Graph-based Characterization of Blood Vessels in Colonoscopy Videos. CARE workshop.
Abstract: We explore the potential of the use of blood vessels as anatomical landmarks for developing image registration methods in colonoscopy images. An unequivocal representation of blood vessels could be used to guide follow-up methods to track lesions over different interventions. We propose a graph-based representation to characterize network structures, such as blood vessels, based on the use of intersections and endpoints. We present a study consisting of the assessment of the minimal performance a keypoint detector should achieve so that the structure can still be recognized. Experimental results prove that, even by achieving a loss of 35% of the keypoints, the descriptive power of the associated graphs to the vessel pattern is still high enough to recognize blood vessels.
Keywords: Colonoscopy; Graph Matching; Biometrics; Vessel; Intersection
|
|
|
C. Alejandro Parraga, Jordi Roca, Dimosthenis Karatzas and Sophie Wuerger. 2014. Limitations of visual gamma corrections in LCD displays. Dis, 35(5), 227–239.
Abstract: A method for estimating the non-linear gamma transfer function of liquid–crystal displays (LCDs) without the need of a photometric measurement device was described by Xiao et al. (2011) [1]. It relies on observer’s judgments of visual luminance by presenting eight half-tone patterns with luminances from 1/9 to 8/9 of the maximum value of each colour channel. These half-tone patterns were distributed over the screen both over the vertical and horizontal viewing axes. We conducted a series of photometric and psychophysical measurements (consisting in the simultaneous presentation of half-tone patterns in each trial) to evaluate whether the angular dependency of the light generated by three different LCD technologies would bias the results of these gamma transfer function estimations. Our results show that there are significant differences between the gamma transfer functions measured and produced by observers at different viewing angles. We suggest appropriate modifications to the Xiao et al. paradigm to counterbalance these artefacts which also have the advantage of shortening the amount of time spent in collecting the psychophysical measurements.
Keywords: Display calibration; Psychophysics; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration
|
|
|
Alicia Fornes, Josep Llados, Joan Mas, Joana Maria Pujadas-Mora and Anna Cabre. 2014. A Bimodal Crowdsourcing Platform for Demographic Historical Manuscripts. Digital Access to Textual Cultural Heritage Conference.103–108.
Abstract: In this paper we present a crowdsourcing web-based application for extracting information from demographic handwritten document images. The proposed application integrates two points of view: the semantic information for demographic research, and the ground-truthing for document analysis research. Concretely, the application has the contents view, where the information is recorded into forms, and the labeling view, with the word labels for evaluating document analysis techniques. The crowdsourcing architecture allows to accelerate the information extraction (many users can work simultaneously), validate the information, and easily provide feedback to the users. We finally show how the proposed application can be extended to other kind of demographic historical manuscripts.
|
|
|
P. Wang, V. Eglin, C. Garcia, C. Largeron, Josep Llados and Alicia Fornes. 2014. A Novel Learning-free Word Spotting Approach Based on Graph Representation. 11th IAPR International Workshop on Document Analysis and Systems.207–211.
Abstract: Effective information retrieval on handwritten document images has always been a challenging task. In this paper, we propose a novel handwritten word spotting approach based on graph representation. The presented model comprises both topological and morphological signatures of handwriting. Skeleton-based graphs with the Shape Context labelled vertexes are established for connected components. Each word image is represented as a sequence of graphs. In order to be robust to the handwriting variations, an exhaustive merging process based on DTW alignment result is introduced in the similarity measure between word images. With respect to the computation complexity, an approximate graph edit distance approach using bipartite matching is employed for graph matching. The experiments on the George Washington dataset and the marriage records from the Barcelona Cathedral dataset demonstrate that the proposed approach outperforms the state-of-the-art structural methods.
|
|
|
Francisco Alvaro, Francisco Cruz, Joan Andreu Sanchez, Oriol Ramos Terrades and Jose Miguel Benedi. 2015. Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars. NEUCOM, 150(A), 147–154.
Abstract: In this paper we dene a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classication features are used to perform an initial classication of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation.
Keywords: document image analysis; stochastic context-free grammars; text classication features
|
|
|
Lluis Gomez and Dimosthenis Karatzas. 2014. Scene Text Recognition: No Country for Old Men? 1st International Workshop on Robust Reading.
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2014. Spotting Symbol Using Sparsity over Learned Dictionary of Local Descriptors. 11th IAPR International Workshop on Document Analysis and Systems.156–160.
Abstract: This paper proposes a new approach to spot symbols into graphical documents using sparse representations. More specifically, a dictionary is learned from a training database of local descriptors defined over the documents. Following their sparse representations, interest points sharing similar properties are used to define interest regions. Using an original adaptation of information retrieval techniques, a vector model for interest regions and for a query symbol is built based on its sparsity in a visual vocabulary where the visual words are columns in the learned dictionary. The matching process is performed comparing the similarity between vector models. Evaluation on SESYD datasets demonstrates that our method is promising.
|
|
|
Marçal Rusiñol, David Aldavert, Ricardo Toledo and Josep Llados. 2015. Efficient segmentation-free keyword spotting in historical document collections. PR, 48(2), 545–555.
Abstract: In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches.
Keywords: Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization
|
|