|
P. Wang, V. Eglin, C. Garcia, C. Largeron, Josep Llados and Alicia Fornes. 2014. Représentation par graphe de mots manuscrits dans les images pour la recherche par similarité. Colloque International Francophone sur l'Écrit et le Document.233–248.
Abstract: Effective information retrieval on handwritten document images has always been
a challenging task. In this paper, we propose a novel handwritten word spotting approach based on graph representation. The presented model comprises both topological and morphological signatures of handwriting. Skeleton-based graphs with the Shape Context labeled vertexes are established for connected components. Each word image is represented as a sequence of graphs. In order to be robust to the handwriting variations, an exhaustive merging process based on DTW alignment results introduced in the similarity measure between word images. With respect to the computation complexity, an approximate graph edit distance approach using bipartite matching is employed for graph matching. The experiments on the George Washington dataset and the marriage records from the Barcelona Cathedral dataset demonstrate that the proposed approach outperforms the state-of-the-art structural methods.
Keywords: word spotting; graph-based representation; shape context description; graph edit distance; DTW; block merging; query by example
|
|
|
Hongxing Gao and 6 others. 2013. Key-region detection for document images -applications to administrative document retrieval. 12th International Conference on Document Analysis and Recognition.230–234.
Abstract: In this paper we argue that a key-region detector designed to take into account the special characteristics of document images can result in the detection of less and more meaningful key-regions. We propose a fast key-region detector able to capture aspects of the structural information of the document, and demonstrate its efficiency by comparing against standard detectors in an administrative document retrieval scenario. We show that using the proposed detector results to a smaller number of detected key-regions and higher performance without any drop in speed compared to standard state of the art detectors.
|
|
|
Alicia Fornes, Josep Llados, Gemma Sanchez and Dimosthenis Karatzas. 2010. Rotation Invariant Hand-Drawn Symbol Recognition based on a Dynamic Time Warping Model. IJDAR, 13(3), 229–241.
Abstract: One of the major difficulties of handwriting symbol recognition is the high variability among symbols because of the different writer styles. In this paper, we introduce a robust approach for describing and recognizing hand-drawn symbols tolerant to these writer style differences. This method, which is invariant to scale and rotation, is based on the dynamic time warping (DTW) algorithm. The symbols are described by vector sequences, a variation of the DTW distance is used for computing the matching distance, and K-Nearest Neighbor is used to classify them. Our approach has been evaluated in two benchmarking scenarios consisting of hand-drawn symbols. Compared with state-of-the-art methods for symbol recognition, our method shows higher tolerance to the irregular deformations induced by hand-drawn strokes.
|
|
|
Pau Riba, Jon Almazan, Alicia Fornes, David Fernandez, Ernest Valveny and Josep Llados. 2014. e-Crowds: a mobile platform for browsing and searching in historical demographyrelated manuscripts. 14th International Conference on Frontiers in Handwriting Recognition.228–233.
Abstract: This paper presents a prototype system running on portable devices for browsing and word searching through historical handwritten document collections. The platform adapts the paradigm of eBook reading, where the narrative is not necessarily sequential, but centered on the user actions. The novelty is to replace digitally born books by digitized historical manuscripts of marriage licenses, so document analysis tasks are required in the browser. With an active reading paradigm, the user can cast queries of people names, so he/she can implicitly follow genealogical links. In addition, the system allows combined searches: the user can refine a search by adding more words to search. As a second contribution, the retrieval functionality involves as a core technology a word spotting module with an unified approach, which allows combined query searches, and also two input modalities: query-by-example, and query-by-string.
|
|
|
Oriol Ramos Terrades, Salvatore Tabbone and Ernest Valveny. 2007. A Review of Shape Descriptors for Document Analysis. 9th International Conference on Document Analysis and Recognition.227–231.
|
|
|
Partha Pratim Roy, Umapada Pal and Josep Llados. 2012. Text line extraction in graphical documents using background and foreground. IJDAR, 15(3), 227–241.
Abstract: 0,405 JCR
In graphical documents (e.g., maps, engineering drawings), artistic documents etc., the text lines are annotated in multiple orientations or curvilinear way to illustrate different locations or symbols. For the optical character recognition of such documents, individual text lines from the documents need to be extracted. In this paper, we propose a novel method to segment such text lines and the method is based on the foreground and background information of the text components. To effectively utilize the background information, a water reservoir concept is used here. In the proposed scheme, at first, individual components are detected and grouped into character clusters in a hierarchical way using size and positional information. Next, the clusters are extended in two extreme sides to determine potential candidate regions. Finally, with the help of these candidate regions,
individual lines are extracted. The experimental results are presented on different datasets of graphical documents, camera-based warped documents, noisy images containing seals, etc. The results demonstrate that our approach is robust and invariant to size and orientation of the text lines present in
the document.
|
|
|
C. Alejandro Parraga, Jordi Roca, Dimosthenis Karatzas and Sophie Wuerger. 2014. Limitations of visual gamma corrections in LCD displays. Dis, 35(5), 227–239.
Abstract: A method for estimating the non-linear gamma transfer function of liquid–crystal displays (LCDs) without the need of a photometric measurement device was described by Xiao et al. (2011) [1]. It relies on observer’s judgments of visual luminance by presenting eight half-tone patterns with luminances from 1/9 to 8/9 of the maximum value of each colour channel. These half-tone patterns were distributed over the screen both over the vertical and horizontal viewing axes. We conducted a series of photometric and psychophysical measurements (consisting in the simultaneous presentation of half-tone patterns in each trial) to evaluate whether the angular dependency of the light generated by three different LCD technologies would bias the results of these gamma transfer function estimations. Our results show that there are significant differences between the gamma transfer functions measured and produced by observers at different viewing angles. We suggest appropriate modifications to the Xiao et al. paradigm to counterbalance these artefacts which also have the advantage of shortening the amount of time spent in collecting the psychophysical measurements.
Keywords: Display calibration; Psychophysics; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration
|
|
|
Josep Llados, Jaime Lopez-Krahe, Gemma Sanchez and Enric Marti. 2000. Interprétation de cartes et plans par mise en correspondance de graphes de attributs. 12 Congrès Francophone AFRIF–AFIA.225–234.
|
|
|
Jaume Gibert and Ernest Valveny. 2010. Graph Embedding based on Nodes Attributes Representatives and a Graph of Words Representation. In In E.R. Hancock, R.C.W., T. Windeatt, I. Ulusoy and F. Escolano,, ed. 13th International worshop on structural and syntactic pattern recognition and 8th international worshop on statistical pattern recognition. Springer Berlin Heidelberg, 223–232. (LNCS.)
Abstract: Although graph embedding has recently been used to extend statistical pattern recognition techniques to the graph domain, some existing embeddings are usually computationally expensive as they rely on classical graph-based operations. In this paper we present a new way to embed graphs into vector spaces by first encapsulating the information stored in the original graph under another graph representation by clustering the attributes of the graphs to be processed. This new representation makes the association of graphs to vectors an easy step by just arranging both node attributes and the adjacency matrix in the form of vectors. To test our method, we use two different databases of graphs whose nodes attributes are of different nature. A comparison with a reference method permits to show that this new embedding is better in terms of classification rates, while being much more faster.
|
|
|
David Aldavert, Marçal Rusiñol, Ricardo Toledo and Josep Llados. 2015. A Study of Bag-of-Visual-Words Representations for Handwritten Keyword Spotting. IJDAR, 18(3), 223–234.
Abstract: The Bag-of-Visual-Words (BoVW) framework has gained popularity among the document image analysis community, specifically as a representation of handwritten words for recognition or spotting purposes. Although in the computer vision field the BoVW method has been greatly improved, most of the approaches in the document image analysis domain still rely on the basic implementation of the BoVW method disregarding such latest refinements. In this paper, we present a review of those improvements and its application to the keyword spotting task. We thoroughly evaluate their impact against a baseline system in the well-known George Washington dataset and compare the obtained results against nine state-of-the-art keyword spotting methods. In addition, we also compare both the baseline and improved systems with the methods presented at the Handwritten Keyword Spotting Competition 2014.
Keywords: Bag-of-Visual-Words; Keyword spotting; Handwritten documents; Performance evaluation
|
|