|
Volkmar Frinken, Markus Baumgartner, Andreas Fischer and Horst Bunke. 2012. Semi-Supervised Learning for Cursive Handwriting Recognition using Keyword Spotting. 13th International Conference on Frontiers in Handwriting Recognition.49–54.
Abstract: State-of-the-art handwriting recognition systems are learning-based systems that require large sets of training data. The creation of training data, and consequently the creation of a well-performing recognition system, requires therefore a substantial amount of human work. This can be reduced with semi-supervised learning, which uses unlabeled text lines for training as well. Current approaches estimate the correct transcription of the unlabeled data via handwriting recognition which is not only extremely demanding as far as computational costs are concerned but also requires a good model of the target language. In this paper, we propose a different approach that makes use of keyword spotting, which is significantly faster and does not need any language model. In a set of experiments we demonstrate its superiority over existing approaches.
|
|
|
Emanuel Indermühle, Volkmar Frinken and Horst Bunke. 2012. Mode Detection in Online Handwritten Documents using BLSTM Neural Networks. 13th International Conference on Frontiers in Handwriting Recognition.302–307.
Abstract: Mode detection in online handwritten documents refers to the process of distinguishing different types of contents, such as text, formulas, diagrams, or tables, one from another. In this paper a new approach to mode detection is proposed that uses bidirectional long-short term memory (BLSTM) neural networks. The BLSTM neural network is a novel type of recursive neural network that has been successfully applied in speech and handwriting recognition. In this paper we show that it has the potential to significantly outperform traditional methods for mode detection, which are usually based on stroke classification. As a further advantage over previous approaches, the proposed system is trainable and does not rely on user-defined heuristics. Moreover, it can be easily adapted to new or additional types of modes by just providing the system with new training data.
|
|
|
Volkmar Frinken, Alicia Fornes, Josep Llados and Jean-Marc Ogier. 2012. Bidirectional Language Model for Handwriting Recognition. Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop. Springer Berlin Heidelberg, 611–619. (LNCS.)
Abstract: In order to improve the results of automatically recognized handwritten text, information about the language is commonly included in the recognition process. A common approach is to represent a text line as a sequence. It is processed in one direction and the language information via n-grams is directly included in the decoding. This approach, however, only uses context on one side to estimate a word’s probability. Therefore, we propose a bidirectional recognition in this paper, using distinct forward and a backward language models. By combining decoding hypotheses from both directions, we achieve a significant increase in recognition accuracy for the off-line writer independent handwriting recognition task. Both language models are of the same type and can be estimated on the same corpus. Hence, the increase in recognition accuracy comes without any additional need for training data or language modeling complexity.
|
|
|
Ernest Valveny, Robert Benavente, Agata Lapedriza, Miquel Ferrer, Jaume Garcia and Gemma Sanchez. 2012. Adaptation of a computer programming course to the EXHE requirements: evaluation five years later.
|
|
|
Marçal Rusiñol and 7 others. 2012. CVC-UAB's participation in the Flowchart Recognition Task of CLEF-IP 2012. Conference and Labs of the Evaluation Forum.
|
|
|
Rahat Khan, Joost Van de Weijer, Dimosthenis Karatzas and Damien Muselet. 2013. Towards multispectral data acquisition with hand-held devices. 20th IEEE International Conference on Image Processing.2053–2057.
Abstract: We propose a method to acquire multispectral data with handheld devices with front-mounted RGB cameras. We propose to use the display of the device as an illuminant while the camera captures images illuminated by the red, green and
blue primaries of the display. Three illuminants and three response functions of the camera lead to nine response values which are used for reflectance estimation. Results are promising and show that the accuracy of the spectral reconstruction improves in the range from 30-40% over the spectral
reconstruction based on a single illuminant. Furthermore, we propose to compute sensor-illuminant aware linear basis by discarding the part of the reflectances that falls in the sensorilluminant null-space. We show experimentally that optimizing reflectance estimation on these new basis functions decreases
the RMSE significantly over basis functions that are independent to sensor-illuminant. We conclude that, multispectral data acquisition is potentially possible with consumer hand-held devices such as tablets, mobiles, and laptops, opening up applications which are currently considered to be unrealistic.
Keywords: Multispectral; mobile devices; color measurements
|
|
|
Christophe Rigaud, Dimosthenis Karatzas, Joost Van de Weijer, Jean-Christophe Burie and Jean-Marc Ogier. 2013. Automatic text localisation in scanned comic books. Proceedings of the International Conference on Computer Vision Theory and Applications.814–819.
Abstract: Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent document understanding enable direct content-based search as opposed to metadata only search (e.g. album title or author name). Few studies have been done in this direction. In this work we detail a novel approach for the automatic text localization in scanned comics book pages, an essential step towards a fully automatic comics book understanding. We focus on speech text as it is semantically important and represents the majority of the text present in comics. The approach is compared with existing methods of text localization found in the literature and results are presented.
Keywords: Text localization; comics; text/graphic separation; complex background; unstructured document
|
|
|
Christophe Rigaud, Dimosthenis Karatzas, Joost Van de Weijer, Jean-Christophe Burie and Jean-Marc Ogier. 2013. An active contour model for speech balloon detection in comics. 12th International Conference on Document Analysis and Recognition.1240–1244.
Abstract: Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent comic book understanding would enable a variety of new applications, including content-based retrieval and content retargeting. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. Few studies have been done in this direction. In this work we detail a novel approach for closed and non-closed speech balloon localization in scanned comic book pages, an essential step towards a fully automatic comic book understanding. The approach is compared with existing methods for closed balloon localization found in the literature and results are presented.
|
|
|
Alicia Fornes, Xavier Otazu and Josep Llados. 2013. Show through cancellation and image enhancement by multiresolution contrast processing. 12th International Conference on Document Analysis and Recognition.200–204.
Abstract: Historical documents suffer from different types of degradation and noise such as background variation, uneven illumination or dark spots. In case of double-sided documents, another common problem is that the back side of the document usually interferes with the front side because of the transparency of the document or ink bleeding. This effect is called the show through phenomenon. Many methods are developed to solve these problems, and in the case of show-through, by scanning and matching both the front and back sides of the document. In contrast, our approach is designed to use only one side of the scanned document. We hypothesize that show-trough are low contrast components, while foreground components are high contrast ones. A Multiresolution Contrast (MC) decomposition is presented in order to estimate the contrast of features at different spatial scales. We cancel the show-through phenomenon by thresholding these low contrast components. This decomposition is also able to enhance the image removing shadowed areas by weighting spatial scales. Results show that the enhanced images improve the readability of the documents, allowing scholars both to recover unreadable words and to solve ambiguities.
|
|
|
David Aldavert, Marçal Rusiñol, Ricardo Toledo and Josep Llados. 2013. Integrating Visual and Textual Cues for Query-by-String Word Spotting. 12th International Conference on Document Analysis and Recognition.511–515.
Abstract: In this paper, we present a word spotting framework that follows the query-by-string paradigm where word images are represented both by textual and visual representations. The textual representation is formulated in terms of character $n$-grams while the visual one is based on the bag-of-visual-words scheme. These two representations are merged together and projected to a sub-vector space. This transform allows to, given a textual query, retrieve word instances that were only represented by the visual modality. Moreover, this statistical representation can be used together with state-of-the-art indexation structures in order to deal with large-scale scenarios. The proposed method is evaluated using a collection of historical documents outperforming state-of-the-art performances.
|
|