|
Fernando Vilariño and Dimosthenis Karatzas. 2015. The Library Living Lab. Open Living Lab Days.
|
|
|
Mohamed Ali Souibgui, Y.Kessentini and Alicia Fornes. 2020. A conditional GAN based approach for distorted camera captured documents recovery. 4th Mediterranean Conference on Pattern Recognition and Artificial Intelligence.
|
|
|
Jaume Gibert, Ernest Valveny, Oriol Ramos Terrades and Horst Bunke. 2011. Multiple Classifiers for Graph of Words Embedding. In Carlo Sansone, Josef Kittler and Fabio Roli, eds. 10th International Conference on Multiple Classifier Systems.36–45. (LNCS.)
Abstract: During the last years, there has been an increasing interest in applying the multiple classifier framework to the domain of structural pattern recognition. Constructing base classifiers when the input patterns are graph based representations is not an easy problem. In this work, we make use of the graph embedding methodology in order to construct different feature vector representations for graphs. The graph of words embedding assigns a feature vector to every graph by counting unary and binary relations between node representatives and combining these pieces of information into a single vector. Selecting different node representatives leads to different vectorial representations and therefore to different base classifiers that can be combined. We experimentally show how this methodology significantly improves the classification of graphs with respect to single base classifiers.
|
|
|
Lluis Gomez, Marçal Rusiñol, Ali Furkan Biten and Dimosthenis Karatzas. 2018. Subtitulació automàtica d'imatges. Estat de l'art i limitacions en el context arxivístic. Jornades Imatge i Recerca.
|
|
|
Lluis Gomez and Dimosthenis Karatzas. 2014. Scene Text Recognition: No Country for Old Men? 1st International Workshop on Robust Reading.
|
|
|
Marçal Rusiñol, Dimosthenis Karatzas and Josep Llados. 2015. Automatic Verification of Properly Signed Multi-page Document Images. Proceedings of the Eleventh International Symposium on Visual Computing.327–336. (LNCS 9475.)
Abstract: In this paper we present an industrial application for the automatic screening of incoming multi-page documents in a banking workflow aimed at determining whether these documents are properly signed or not. The proposed method is divided in three main steps. First individual pages are classified in order to identify the pages that should contain a signature. In a second step, we segment within those key pages the location where the signatures should appear. The last step checks whether the signatures are present or not. Our method is tested in a real large-scale environment and we report the results when checking two different types of real multi-page contracts, having in total more than 14,500 pages.
Keywords: Document Image; Manual Inspection; Signature Verification; Rejection Criterion; Document Flow
|
|
|
Fernando Vilariño, Dimosthenis Karatzas and Alberto Valcarce. 2018. Libraries as New Innovation Hubs: The Library Living Lab. 30th ISPIM Innovation Conference.
Abstract: Libraries are in deep transformation both in EU and around the world, and they are thriving within a great window of opportunity for innovation. In this paper, we show how the Library Living Lab in Barcelona participated of this changing scenario and contributed to create the Bibliolab program, where more than 200 public libraries give voice to their users in a global user-centric innovation initiative, using technology as enabling factor. The Library Living Lab is a real 4-helix implementation where Universities, Research Centers, Public Administration, Companies and the Neighbors are joint together to explore how technology transforms the cultural experience of people. This case is an example of scalability and provides reference tools for policy making, sustainability, user engage methodologies and governance. We provide specific examples of new prototypes and services that help to understand how to redefine the role of the Library as a real hub for social innovation.
|
|
|
Pau Torras, Arnau Baro, Lei Kang and Alicia Fornes. 2021. On the Integration of Language Models into Sequence to Sequence Architectures for Handwritten Music Recognition. International Society for Music Information Retrieval Conference.690–696.
Abstract: Despite the latest advances in Deep Learning, the recognition of handwritten music scores is still a challenging endeavour. Even though the recent Sequence to Sequence(Seq2Seq) architectures have demonstrated its capacity to reliably recognise handwritten text, their performance is still far from satisfactory when applied to historical handwritten scores. Indeed, the ambiguous nature of handwriting, the non-standard musical notation employed by composers of the time and the decaying state of old paper make these scores remarkably difficult to read, sometimes even by trained humans. Thus, in this work we explore the incorporation of language models into a Seq2Seq-based architecture to try to improve transcriptions where the aforementioned unclear writing produces statistically unsound mistakes, which as far as we know, has never been attempted for this field of research on this architecture. After studying various Language Model integration techniques, the experimental evaluation on historical handwritten music scores shows a significant improvement over the state of the art, showing that this is a promising research direction for dealing with such difficult manuscripts.
|
|
|
Olivier Lefebvre and 6 others. 2015. Monitoring neuromotricity on-line: a cloud computing approach. 17th Conference of the International Graphonomics Society IGS2015.
Abstract: The goal of our experiment is to develop a useful and accessible tool that can be used to evaluate a patient's health by analyzing handwritten strokes. We use a cloud computing approach to analyze stroke data sampled on a commercial tablet working on the Android platform and a distant server to perform complex calculations using the Delta and Sigma lognormal algorithms. A Google Drive account is used to store the data and to ease the development of the project. The communication between the tablet, the cloud and the server is encrypted to ensure biomedical information confidentiality. Highly parameterized biomedical tests are implemented on the tablet as well as a free drawing test to evaluate the validity of the data acquired by the first test compared to the second one. A blurred shape model descriptor pattern recognition algorithm is used to classify the data obtained by the free drawing test. The functions presented in this paper are still currently under development and other improvements are needed before launching the application in the public domain.
|
|
|
Asma Bensalah, Alicia Fornes, Cristina Carmona_Duarte and Josep Llados. 2022. Easing Automatic Neurorehabilitation via Classification and Smoothness Analysis. Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022.336–348. (LNCS.)
Abstract: Assessing the quality of movements for post-stroke patients during the rehabilitation phase is vital given that there is no standard stroke rehabilitation plan for all the patients. In fact, it depends basically on the patient’s functional independence and its progress along the rehabilitation sessions. To tackle this challenge and make neurorehabilitation more agile, we propose an automatic assessment pipeline that starts by recognising patients’ movements by means of a shallow deep learning architecture, then measuring the movement quality using jerk measure and related measures. A particularity of this work is that the dataset used is clinically relevant, since it represents movements inspired from Fugl-Meyer a well common upper-limb clinical stroke assessment scale for stroke patients. We show that it is possible to detect the contrast between healthy and patients movements in terms of smoothness, besides achieving conclusions about the patients’ progress during the rehabilitation sessions that correspond to the clinicians’ findings about each case.
Keywords: Neurorehabilitation; Upper-lim; Movement classification; Movement smoothness; Deep learning; Jerk
|
|