|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2012. Text/graphic separation using a sparse representation with multi-learned dictionaries. 21st International Conference on Pattern Recognition.
Abstract: In this paper, we propose a new approach to extract text regions from graphical documents. In our method, we first empirically construct two sequences of learned dictionaries for the text and graphical parts respectively. Then, we compute the sparse representations of all different sizes and non-overlapped document patches in these learned dictionaries. Based on these representations, each patch can be classified into the text or graphic category by comparing its reconstruction errors. Same-sized patches in one category are then merged together to define the corresponding text or graphic layers which are combined to createfinal text/graphic layer. Finally, in a post-processing step, text regions are further filtered out by using some learned thresholds.
Keywords: Graphics Recognition; Layout Analysis; Document Understandin
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2012. Noise suppression over bi-level graphical documents using a sparse representation. Colloque International Francophone sur l'Écrit et le Document.
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2014. Spotting Symbol Using Sparsity over Learned Dictionary of Local Descriptors. 11th IAPR International Workshop on Document Analysis and Systems.156–160.
Abstract: This paper proposes a new approach to spot symbols into graphical documents using sparse representations. More specifically, a dictionary is learned from a training database of local descriptors defined over the documents. Following their sparse representations, interest points sharing similar properties are used to define interest regions. Using an original adaptation of information retrieval techniques, a vector model for interest regions and for a query symbol is built based on its sparsity in a visual vocabulary where the visual words are columns in the learned dictionary. The matching process is performed comparing the similarity between vector models. Evaluation on SESYD datasets demonstrates that our method is promising.
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2016. Sparse representation over learned dictionary for symbol recognition. SP, 125, 36–47.
Abstract: In this paper we propose an original sparse vector model for symbol retrieval task. More specically, we apply the K-SVD algorithm for learning a visual dictionary based on symbol descriptors locally computed around interest points. Results on benchmark datasets show that the obtained sparse representation is competitive related to state-of-the-art methods. Moreover, our sparse representation is invariant to rotation and scale transforms and also robust to degraded images and distorted symbols. Thereby, the learned visual dictionary is able to represent instances of unseen classes of symbols.
Keywords: Symbol Recognition; Sparse Representation; Learned Dictionary; Shape Context; Interest Points
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2016. Spotting Symbol over Graphical Documents Via Sparsity in Visual Vocabulary. Recent Trends in Image Processing and Pattern Recognition.
|
|
|
Thanh Ha Do, Oriol Ramos Terrades and Salvatore Tabbone. 2019. DSD: document sparse-based denoising algorithm. PAA, 22(1), 177–186.
Abstract: In this paper, we present a sparse-based denoising algorithm for scanned documents. This method can be applied to any kind of scanned documents with satisfactory results. Unlike other approaches, the proposed approach encodes noise documents through sparse representation and visual dictionary learning techniques without any prior noise model. Moreover, we propose a precision parameter estimator. Experiments on several datasets demonstrate the robustness of the proposed approach compared to the state-of-the-art methods on document denoising.
Keywords: Document denoising; Sparse representations; Sparse dictionary learning; Document degradation models
|
|
|
T.O. Nguyen, Salvatore Tabbone, Oriol Ramos Terrades and A.T. Thierry. 2008. Proposition d'un descripteur de formes et du modèle vectoriel pour la recherche de symboles. Colloque International Francophone sur l'Ecrit et le Document.79–84.
|
|
|
T.O. Nguyen, Salvatore Tabbone and Oriol Ramos Terrades. 2008. Symbol Descriptor Based on Shape Context and Vector Model of Information Retrieval. Proceedings of the 8th IAPR International Workshop on Document Analysis Systems,.191–197.
|
|
|
T.Chauhan, E.Perales, Kaida Xiao, E.Hird, Dimosthenis Karatzas and Sophie Wuerger. 2014. The achromatic locus: Effect of navigation direction in color space. VSS, 14 (1)(25), 1–11.
Abstract: 5Y Impact Factor: 2.99 / 1st (Ophthalmology)
An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m2). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes.
Keywords: achromatic; unique hues; color constancy; luminance; color space
|
|
|
Suman Ghosh, Lluis Gomez, Dimosthenis Karatzas and Ernest Valveny. 2015. Efficient indexing for Query By String text retrieval. 6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015.1236–1240.
Abstract: This paper deals with Query By String word spotting in scene images. A hierarchical text segmentation algorithm based on text specific selective search is used to find text regions. These regions are indexed per character n-grams present in the text region. An attribute representation based on Pyramidal Histogram of Characters (PHOC) is used to compare text regions with the query text. For generation of the index a similar attribute space based Pyramidal Histogram of character n-grams is used. These attribute models are learned using linear SVMs over the Fisher Vector [1] representation of the images along with the PHOC labels of the corresponding strings.
|
|