|
Anjan Dutta, Josep Llados, Horst Bunke, & Umapada Pal. (2018). Product graph-based higher order contextual similarities for inexact subgraph matching. PR - Pattern Recognition, 76, 596–611.
Abstract: Many algorithms formulate graph matching as an optimization of an objective function of pairwise quantification of nodes and edges of two graphs to be matched. Pairwise measurements usually consider local attributes but disregard contextual information involved in graph structures. We address this issue by proposing contextual similarities between pairs of nodes. This is done by considering the tensor product graph (TPG) of two graphs to be matched, where each node is an ordered pair of nodes of the operand graphs. Contextual similarities between a pair of nodes are computed by accumulating weighted walks (normalized pairwise similarities) terminating at the corresponding paired node in TPG. Once the contextual similarities are obtained, we formulate subgraph matching as a node and edge selection problem in TPG. We use contextual similarities to construct an objective function and optimize it with a linear programming approach. Since random walk formulation through TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities and better discrimination among the nodes and edges. Experimental results shown on synthetic as well as real benchmarks illustrate that higher order contextual similarities increase discriminating power and allow one to find approximate solutions to the subgraph matching problem.
|
|
|
Sophie Wuerger, Kaida Xiao, Chenyang Fu, & Dimosthenis Karatzas. (2010). Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes. OPO - Ophthalmic and Physiological Optics, 30(5), 635–659.
Abstract: The purpose of this study was to assess whether age-related chromatic sensitivity changes are associated with corresponding changes in hue perception in a large sample of colour-normal observers over a wide age range (n = 185; age range: 18-75 years). In these observers we determined both the sensitivity along the protan, deutan and tritan line; and settings for the four unique hues, from which the characteristics of the higher-order colour mechanisms can be derived. We found a significant decrease in chromatic sensitivity due to ageing, in particular along the tritan line. From the unique hue settings we derived the cone weightings associated with the colour mechanisms that are at equilibrium for the four unique hues. We found that the relative cone weightings (w(L) /w(M) and w(L) /w(S)) associated with the unique hues were independent of age. Our results are consistent with previous findings that the unique hues are rather constant with age while chromatic sensitivity declines. They also provide evidence in favour of the hypothesis that higher-order colour mechanisms are equipped with flexible cone weightings, as opposed to fixed weights. The mechanism underlying this compensation is still poorly understood.
|
|
|
Jose Antonio Rodriguez, Florent Perronnin, Gemma Sanchez, & Josep Llados. (2010). Unsupervised writer adaptation of whole-word HMMs with application to word-spotting. PRL - Pattern Recognition Letters, 31(8), 742–749.
Abstract: In this paper we propose a novel approach for writer adaptation in a handwritten word-spotting task. The method exploits the fact that the semi-continuous hidden Markov model separates the word model parameters into (i) a codebook of shapes and (ii) a set of word-specific parameters.
Our main contribution is to employ this property to derive writer-specific word models by statistically adapting an initial universal codebook to each document. This process is unsupervised and does not even require the appearance of the keyword(s) in the searched document. Experimental results show an increase in performance when this adaptation technique is applied. To the best of our knowledge, this is the first work dealing with adaptation for word-spotting. The preliminary version of this paper obtained an IBM Best Student Paper Award at the 19th International Conference on Pattern Recognition.
Keywords: Word-spotting; Handwriting recognition; Writer adaptation; Hidden Markov model; Document analysis
|
|
|
Anjan Dutta, Josep Llados, & Umapada Pal. (2013). A symbol spotting approach in graphical documents by hashing serialized graphs. PR - Pattern Recognition, 46(3), 752–768.
Abstract: In this paper we propose a symbol spotting technique in graphical documents. Graphs are used to represent the documents and a (sub)graph matching technique is used to detect the symbols in them. We propose a graph serialization to reduce the usual computational complexity of graph matching. Serialization of graphs is performed by computing acyclic graph paths between each pair of connected nodes. Graph paths are one-dimensional structures of graphs which are less expensive in terms of computation. At the same time they enable robust localization even in the presence of noise and distortion. Indexing in large graph databases involves a computational burden as well. We propose a graph factorization approach to tackle this problem. Factorization is intended to create a unified indexed structure over the database of graphical documents. Once graph paths are extracted, the entire database of graphical documents is indexed in hash tables by locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. We have performed detailed experiments with various datasets of line drawings and compared our method with the state-of-the-art works. The results demonstrate the effectiveness and efficiency of our technique.
Keywords: Symbol spotting; Graphics recognition; Graph matching; Graph serialization; Graph factorization; Graph paths; Hashing
|
|
|
Miquel Ferrer, Dimosthenis Karatzas, Ernest Valveny, I. Bardaji, & Horst Bunke. (2011). A Generic Framework for Median Graph Computation based on a Recursive Embedding Approach. CVIU - Computer Vision and Image Understanding, 115(7), 919–928.
Abstract: The median graph has been shown to be a good choice to obtain a represen- tative of a set of graphs. However, its computation is a complex problem. Recently, graph embedding into vector spaces has been proposed to obtain approximations of the median graph. The problem with such an approach is how to go from a point in the vector space back to a graph in the graph space. The main contribution of this paper is the generalization of this previ- ous method, proposing a generic recursive procedure that permits to recover the graph corresponding to a point in the vector space, introducing only the amount of approximation inherent to the use of graph matching algorithms. In order to evaluate the proposed method, we compare it with the set me- dian and with the other state-of-the-art embedding-based methods for the median graph computation. The experiments are carried out using four dif- ferent databases (one semi-artificial and three containing real-world data). Results show that with the proposed approach we can obtain better medi- ans, in terms of the sum of distances to the training graphs, than with the previous existing methods.
Keywords: Median Graph, Graph Embedding, Graph Matching, Structural Pattern Recognition
|
|