|
Marçal Rusiñol, R.Roset, Josep Llados, & C.Montaner. (2011). Automatic Index Generation of Digitized Map Series by Coordinate Extraction and Interpretation. ePER - e-Perimetron, 219–229.
Abstract: By means of computer vision algorithms scanned images of maps are processed in order to extract relevant geographic information from printed coordinate pairs. The meaningful information is then transformed into georeferencing information for each single map sheet, and the complete set is compiled to produce a graphical index sheet for the map series along with relevant metadata. The whole process is fully automated and trained to attain maximum effectivity and throughput.
|
|
|
Manuel Carbonell, Alicia Fornes, Mauricio Villegas, & Josep Llados. (2020). A Neural Model for Text Localization, Transcription and Named Entity Recognition in Full Pages. PRL - Pattern Recognition Letters, 136, 219–227.
Abstract: In the last years, the consolidation of deep neural network architectures for information extraction in document images has brought big improvements in the performance of each of the tasks involved in this process, consisting of text localization, transcription, and named entity recognition. However, this process is traditionally performed with separate methods for each task. In this work we propose an end-to-end model that combines a one stage object detection network with branches for the recognition of text and named entities respectively in a way that shared features can be learned simultaneously from the training error of each of the tasks. By doing so the model jointly performs handwritten text detection, transcription, and named entity recognition at page level with a single feed forward step. We exhaustively evaluate our approach on different datasets, discussing its advantages and limitations compared to sequential approaches. The results show that the model is capable of benefiting from shared features by simultaneously solving interdependent tasks.
|
|
|
Lluis Pere de las Heras, Ahmed Sheraz, Marcus Liwicki, Ernest Valveny, & Gemma Sanchez. (2014). Statistical Segmentation and Structural Recognition for Floor Plan Interpretation. IJDAR - International Journal on Document Analysis and Recognition, 17(3), 221–237.
Abstract: A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents.
|
|
|
David Aldavert, Marçal Rusiñol, Ricardo Toledo, & Josep Llados. (2015). A Study of Bag-of-Visual-Words Representations for Handwritten Keyword Spotting. IJDAR - International Journal on Document Analysis and Recognition, 18(3), 223–234.
Abstract: The Bag-of-Visual-Words (BoVW) framework has gained popularity among the document image analysis community, specifically as a representation of handwritten words for recognition or spotting purposes. Although in the computer vision field the BoVW method has been greatly improved, most of the approaches in the document image analysis domain still rely on the basic implementation of the BoVW method disregarding such latest refinements. In this paper, we present a review of those improvements and its application to the keyword spotting task. We thoroughly evaluate their impact against a baseline system in the well-known George Washington dataset and compare the obtained results against nine state-of-the-art keyword spotting methods. In addition, we also compare both the baseline and improved systems with the methods presented at the Handwritten Keyword Spotting Competition 2014.
Keywords: Bag-of-Visual-Words; Keyword spotting; Handwritten documents; Performance evaluation
|
|
|
Partha Pratim Roy, Umapada Pal, & Josep Llados. (2012). Text line extraction in graphical documents using background and foreground. IJDAR - International Journal on Document Analysis and Recognition, 15(3), 227–241.
Abstract: 0,405 JCR
In graphical documents (e.g., maps, engineering drawings), artistic documents etc., the text lines are annotated in multiple orientations or curvilinear way to illustrate different locations or symbols. For the optical character recognition of such documents, individual text lines from the documents need to be extracted. In this paper, we propose a novel method to segment such text lines and the method is based on the foreground and background information of the text components. To effectively utilize the background information, a water reservoir concept is used here. In the proposed scheme, at first, individual components are detected and grouped into character clusters in a hierarchical way using size and positional information. Next, the clusters are extended in two extreme sides to determine potential candidate regions. Finally, with the help of these candidate regions,
individual lines are extracted. The experimental results are presented on different datasets of graphical documents, camera-based warped documents, noisy images containing seals, etc. The results demonstrate that our approach is robust and invariant to size and orientation of the text lines present in
the document.
|
|