|
Ernest Valveny, & Philippe Dosch. (2007). A General Framework for the Evaluation of Symbol Recognition Methods. International Journal on Document Analysis and Recognition, vol. 9(1), pp 59–74.
|
|
|
Josep Llados, & Enric Marti. (1999). Graph-edit algorithms for hand-drawn graphical document recognition and their automatic introduction. Machine Graphics & Vision journal, special issue on Graph transformation, .
|
|
|
Fernando Vilariño, Dimosthenis Karatzas, & Alberto Valcarce. (2018). The Library Living Lab Barcelona: A participative approach to technology as an enabling factor for innovation in cultural spaces. Technology Innovation Management Review.
|
|
|
Lei Kang, Pau Riba, Marcal Rusinol, Alicia Fornes, & Mauricio Villegas. (2021). Content and Style Aware Generation of Text-line Images for Handwriting Recognition. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, .
Abstract: Handwritten Text Recognition has achieved an impressive performance in public benchmarks. However, due to the high inter- and intra-class variability between handwriting styles, such recognizers need to be trained using huge volumes of manually labeled training data. To alleviate this labor-consuming problem, synthetic data produced with TrueType fonts has been often used in the training loop to gain volume and augment the handwriting style variability. However, there is a significant style bias between synthetic and real data which hinders the improvement of recognition performance. To deal with such limitations, we propose a generative method for handwritten text-line images, which is conditioned on both visual appearance and textual content. Our method is able to produce long text-line samples with diverse handwriting styles. Once properly trained, our method can also be adapted to new target data by only accessing unlabeled text-line images to mimic handwritten styles and produce images with any textual content. Extensive experiments have been done on making use of the generated samples to boost Handwritten Text Recognition performance. Both qualitative and quantitative results demonstrate that the proposed approach outperforms the current state of the art.
|
|
|
Ruben Tito, Dimosthenis Karatzas, & Ernest Valveny. (2023). Hierarchical multimodal transformers for Multipage DocVQA. PR - Pattern Recognition, 144(109834).
Abstract: Existing work on DocVQA only considers single-page documents. However, in real applications documents are mostly composed of multiple pages that should be processed altogether. In this work, we propose a new multimodal hierarchical method Hi-VT5, that overcomes the limitations of current methods to process long multipage documents. In contrast to previous hierarchical methods that focus on different semantic granularity (He et al., 2021) or different subtasks (Zhou et al., 2022) used in image classification. Our method is a hierarchical transformer architecture where the encoder learns to summarize the most relevant information of every page and then, the decoder uses this summarized representation to generate the final answer, following a bottom-up approach. Moreover, due to the lack of multipage DocVQA datasets, we also introduce MP-DocVQA, an extension of SP-DocVQA where questions are posed over multipage documents instead of single pages. Through extensive experimentation, we demonstrate that Hi-VT5 is able, in a single stage, to answer the questions and provide the page that contains the answer, which can be used as a kind of explainability measure.
|
|