|
Dena Bazazian, Raul Gomez, Anguelos Nicolaou, Lluis Gomez, Dimosthenis Karatzas, & Andrew Bagdanov. (2019). Fast: Facilitated and accurate scene text proposals through fcn guided pruning. PRL - Pattern Recognition Letters, 119, 112–120.
Abstract: Class-specific text proposal algorithms can efficiently reduce the search space for possible text object locations in an image. In this paper we combine the Text Proposals algorithm with Fully Convolutional Networks to efficiently reduce the number of proposals while maintaining the same recall level and thus gaining a significant speed up. Our experiments demonstrate that such text proposal approaches yield significantly higher recall rates than state-of-the-art text localization techniques, while also producing better-quality localizations. Our results on the ICDAR 2015 Robust Reading Competition (Challenge 4) and the COCO-text datasets show that, when combined with strong word classifiers, this recall margin leads to state-of-the-art results in end-to-end scene text recognition.
|
|
|
Pau Riba, Josep Llados, & Alicia Fornes. (2020). Hierarchical graphs for coarse-to-fine error tolerant matching. PRL - Pattern Recognition Letters, 134, 116–124.
Abstract: During the last years, graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their ability to capture both structural and appearance-based information. Thus, they provide a greater representational power than classical statistical frameworks. However, graph-based representations leads to high computational complexities usually dealt by graph embeddings or approximated matching techniques. Despite their representational power, they are very sensitive to noise and small variations of the input image. With the aim to cope with the time complexity and the variability present in the generated graphs, in this paper we propose to construct a novel hierarchical graph representation. Graph clustering techniques adapted from social media analysis have been used in order to contract a graph at different abstraction levels while keeping information about the topology. Abstract nodes attributes summarise information about the contracted graph partition. For the proposed representations, a coarse-to-fine matching technique is defined. Hence, small graphs are used as a filtering before more accurate matching methods are applied. This approach has been validated in real scenarios such as classification of colour images or retrieval of handwritten words (i.e. word spotting).
Keywords: Hierarchical graph representation; Coarse-to-fine graph matching; Graph-based retrieval
|
|
|
Thanh Nam Le, Muhammad Muzzamil Luqman, Anjan Dutta, Pierre Heroux, Christophe Rigaud, Clement Guerin, et al. (2018). Subgraph spotting in graph representations of comic book images. PRL - Pattern Recognition Letters, 112, 118–124.
Abstract: Graph-based representations are the most powerful data structures for extracting, representing and preserving the structural information of underlying data. Subgraph spotting is an interesting research problem, especially for studying and investigating the structural information based content-based image retrieval (CBIR) and query by example (QBE) in image databases. In this paper we address the problem of lack of freely available ground-truthed datasets for subgraph spotting and present a new dataset for subgraph spotting in graph representations of comic book images (SSGCI) with its ground-truth and evaluation protocol. Experimental results of two state-of-the-art methods of subgraph spotting are presented on the new SSGCI dataset.
Keywords: Attributed graph; Region adjacency graph; Graph matching; Graph isomorphism; Subgraph isomorphism; Subgraph spotting; Graph indexing; Graph retrieval; Query by example; Dataset and comic book images
|
|
|
B. Gautam, Oriol Ramos Terrades, Joana Maria Pujadas-Mora, & Miquel Valls-Figols. (2020). Knowledge graph based methods for record linkage. PRL - Pattern Recognition Letters, 136, 127–133.
Abstract: Nowadays, it is common in Historical Demography the use of individual-level data as a consequence of a predominant life-course approach for the understanding of the demographic behaviour, family transition, mobility, etc. Advanced record linkage is key since it allows increasing the data complexity and its volume to be analyzed. However, current methods are constrained to link data from the same kind of sources. Knowledge graph are flexible semantic representations, which allow to encode data variability and semantic relations in a structured manner.
In this paper we propose the use of knowledge graph methods to tackle record linkage tasks. The proposed method, named WERL, takes advantage of the main knowledge graph properties and learns embedding vectors to encode census information. These embeddings are properly weighted to maximize the record linkage performance. We have evaluated this method on benchmark data sets and we have compared it to related methods with stimulating and satisfactory results.
|
|
|
Francisco Alvaro, Francisco Cruz, Joan Andreu Sanchez, Oriol Ramos Terrades, & Jose Miguel Benedi. (2015). Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars. NEUCOM - Neurocomputing, 150(A), 147–154.
Abstract: In this paper we dene a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classication features are used to perform an initial classication of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation.
Keywords: document image analysis; stochastic context-free grammars; text classication features
|
|