|
Ernest Valveny, Philippe Dosch, Adam Winstanley, Yu Zhou, Su Yang, Luo Yan, et al. (2006). A general framework for the evaluation of symbol recognition methods. International Journal on Document Analysis and Recognition (IJDAR), 9(1): 59–74.
|
|
|
Fernando Vilariño, Dimosthenis Karatzas, & Alberto Valcarce. (2018). The Library Living Lab Barcelona: A participative approach to technology as an enabling factor for innovation in cultural spaces. Technology Innovation Management Review.
|
|
|
Francisco Alvaro, Francisco Cruz, Joan Andreu Sanchez, Oriol Ramos Terrades, & Jose Miguel Benedi. (2015). Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars. NEUCOM - Neurocomputing, 150(A), 147–154.
Abstract: In this paper we dene a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classication features are used to perform an initial classication of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation.
Keywords: document image analysis; stochastic context-free grammars; text classication features
|
|
|
G.Thorvaldsen, Joana Maria Pujadas-Mora, T.Andersen, L.Eikvil, Josep Llados, Alicia Fornes, et al. (2015). A Tale of two Transcriptions. Historical Life Course Studies, 1–19.
Abstract: non-indexed
This article explains how two projects implement semi-automated transcription routines: for census sheets in Norway and marriage protocols from Barcelona. The Spanish system was created to transcribe the marriage license books from 1451 to 1905 for the Barcelona area; one of the world’s longest series of preserved vital records. Thus, in the Project “Five Centuries of Marriages” (5CofM) at the Autonomous University of Barcelona’s Center for Demographic Studies, the Barcelona Historical Marriage Database has been built. More than 600,000 records were transcribed by 150 transcribers working online. The Norwegian material is cross-sectional as it is the 1891 census, recorded on one sheet per person. This format and the underlining of keywords for several variables made it more feasible to semi-automate data entry than when many persons are listed on the same page. While Optical Character Recognition (OCR) for printed text is scientifically mature, computer vision research is now focused on more difficult problems such as handwriting recognition. In the marriage project, document analysis methods have been proposed to automatically recognize the marriage licenses. Fully automatic recognition is still a challenge, but some promising results have been obtained. In Spain, Norway and elsewhere the source material is available as scanned pictures on the Internet, opening up the possibility for further international cooperation concerning automating the transcription of historic source materials. Like what is being done in projects to digitize printed materials, the optimal solution is likely to be a combination of manual transcription and machine-assisted recognition also for hand-written sources.
Keywords: Nominative Sources; Census; Vital Records; Computer Vision; Optical Character Recognition; Word Spotting
|
|
|
Gemma Sanchez, Alicia Fornes, Joan Mas, & Josep Llados. (2007). Computer Vision Tools for Visually Impaired Children Learning.
|
|