|
Angel Sappa and Boris X. Vintimilla. 2007. Cost-Based Closed Contour Representations.
|
|
|
Angel Sappa and M.A. Garcia. 2007. Incremental Integration of Multiresolution Range Images.
|
|
|
Fadi Dornaika and Angel Sappa. 2007. Rigid and Non-rigid Face Motion Tracking by Aligning Texture Maps and Stereo 3D Models. PRL, 28(15), 2116–2126.
|
|
|
Jaume Amores, N. Sebe and Petia Radeva. 2007. Context-Based Object-Class Recognition and Retrieval by Generalized Correlograms.
|
|
|
Carme Julia, Angel Sappa, Felipe Lumbreras, Joan Serrat and Antonio Lopez. 2008. Rank Estimation in 3D Multibody Motion Segmentation. Electronic Letters, 44(4), 279–280.
Abstract: A novel technique for rank estimation in 3D multibody motion segmentation is proposed. It is based on the study of the frequency spectra of moving rigid objects and does not use or assume a prior knowledge of the objects contained in the scene (i.e. number of objects and motion). The significance of rank estimation on multibody motion segmentation results is shown by using two motion segmentation algorithms over both synthetic and real data.
|
|
|
Joan Serrat, Ferran Diego, Felipe Lumbreras, Jose Manuel Alvarez, Antonio Lopez and C. Elvira. 2008. Dynamic Comparison of Headlights. Journal of Automobile Engineering, 222(5), 643–656.
Keywords: video alignment
|
|
|
Yu Jie, Jaume Amores, N. Sebe, Petia Radeva and Tian Qi. 2008. Distance Learning for Similarity Estimation.
|
|
|
Angel Sappa, Fadi Dornaika, Daniel Ponsa, David Geronimo and Antonio Lopez. 2008. An Efficient Approach to Onboard Stereo Vision System Pose Estimation. TITS, 9(3), 476–490.
Abstract: This paper presents an efficient technique for estimating the pose of an onboard stereo vision system relative to the environment’s dominant surface area, which is supposed to be the road surface. Unlike previous approaches, it can be used either for urban or highway scenarios since it is not based on a specific visual traffic feature extraction but on 3-D raw data points. The whole process is performed in the Euclidean space and consists of two stages. Initially, a compact 2-D representation of the original 3-D data points is computed. Then, a RANdom SAmple Consensus (RANSAC) based least-squares approach is used to fit a plane to the road. Fast RANSAC fitting is obtained by selecting points according to a probability function that takes into account the density of points at a given depth. Finally, stereo camera height and pitch angle are computed related to the fitted road plane. The proposed technique is intended to be used in driverassistance systems for applications such as vehicle or pedestrian detection. Experimental results on urban environments, which are the most challenging scenarios (i.e., flat/uphill/downhill driving, speed bumps, and car’s accelerations), are presented. These results are validated with manually annotated ground truth. Additionally, comparisons with previous works are presented to show the improvements in the central processing unit processing time, as well as in the accuracy of the obtained results.
Keywords: Camera extrinsic parameter estimation, ground plane estimation, onboard stereo vision system
|
|
|
Fadi Dornaika and Angel Sappa. 2008. Evaluation of an Appearance-based 3D Face Tracker using Dense 3D Data.
|
|
|
Hugo Berti, Angel Sappa and Osvaldo Agamennoni. 2008. Improved Dynamic Window Approach by Using Lyapunov Stability Criteria.
|
|