|
A.F. Sole, Antonio Lopez and G. Sapiro. 2001. Crease Enhancement Diffusion. Computer Vision and Image Understanding, 84(2): 241–248 (IF: 1.298).
|
|
|
Aura Hernandez-Sabate, Jose Elias Yauri, Pau Folch, Miquel Angel Piera and Debora Gil. 2022. Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals. APPLSCI, 12(5), 2298.
Abstract: The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment.
Keywords: Cognitive states; Mental workload; EEG analysis; Neural networks; Multimodal data fusion
|
|
|
Iban Berganzo-Besga, Hector A. Orengo, Felipe Lumbreras, Paloma Aliende and Monica N. Ramsey. 2022. Automated detection and classification of multi-cell Phytoliths using Deep Learning-Based Algorithms. JArchSci, 148, 105654.
Abstract: This paper presents an algorithm for automated detection and classification of multi-cell phytoliths, one of the major components of many archaeological and paleoenvironmental deposits. This identification, based on phytolith wave pattern, is made using a pretrained VGG19 deep learning model. This approach has been tested in three key phytolith genera for the study of agricultural origins in Near East archaeology: Avena, Hordeum and Triticum. Also, this classification has been validated at species-level using Triticum boeoticum and dicoccoides images. Due to the diversity of microscopes, cameras and chemical treatments that can influence images of phytolith slides, three types of data augmentation techniques have been implemented: rotation of the images at 45-degree angles, random colour and brightness jittering, and random blur/sharpen. The implemented workflow has resulted in an overall accuracy of 93.68% for phytolith genera, improving previous attempts. The algorithm has also demonstrated its potential to automatize the classification of phytoliths species with an overall accuracy of 100%. The open code and platforms employed to develop the algorithm assure the method's accessibility, reproducibility and reusability.
|
|
|
David Geronimo, Angel Sappa, Daniel Ponsa and Antonio Lopez. 2010. 2D-3D based on-board pedestrian detection system. CVIU, 114(5), 583–595.
Abstract: During the next decade, on-board pedestrian detection systems will play a key role in the challenge of increasing traffic safety. The main target of these systems, to detect pedestrians in urban scenarios, implies overcoming difficulties like processing outdoor scenes from a mobile platform and searching for aspect-changing objects in cluttered environments. This makes such systems combine techniques in the state-of-the-art Computer Vision. In this paper we present a three module system based on both 2D and 3D cues. The first module uses 3D information to estimate the road plane parameters and thus select a coherent set of regions of interest (ROIs) to be further analyzed. The second module uses Real AdaBoost and a combined set of Haar wavelets and edge orientation histograms to classify the incoming ROIs as pedestrian or non-pedestrian. The final module loops again with the 3D cue in order to verify the classified ROIs and with the 2D in order to refine the final results. According to the results, the integration of the proposed techniques gives rise to a promising system.
Keywords: Pedestrian detection; Advanced Driver Assistance Systems; Horizon line; Haar wavelets; Edge orientation histograms
|
|
|
Gemma Rotger, Francesc Moreno-Noguer, Felipe Lumbreras and Antonio Agudo. 2019. Detailed 3D face reconstruction from a single RGB image.
Abstract: This paper introduces a method to obtain a detailed 3D reconstruction of facial skin from a single RGB image.
To this end, we propose the exclusive use of an input image without requiring any information about the observed material nor training data to model the wrinkle properties. They are detected and characterized directly from the image via a simple and effective parametric model, determining several features such as location, orientation, width, and height. With these ingredients, we propose to minimize a photometric error to retrieve the final detailed 3D map, which is initialized by current techniques based on deep learning. In contrast with other approaches, we only require estimating a depth parameter, making our approach fast and intuitive. Extensive experimental evaluation is presented in a wide variety of synthetic and real images, including different skin properties and facial
expressions. In all cases, our method outperforms the current approaches regarding 3D reconstruction accuracy, providing striking results for both large and fine wrinkles.
Keywords: 3D Wrinkle Reconstruction; Face Analysis, Optimization.
|
|
|
Felipe Lumbreras and Joan Serrat. 1996. Wavelet filtering for the segmentation of marble images. Optical Engineering, 35(10).
|
|
|
Felipe Lumbreras and Joan Serrat. 1996. Segmentation of petrographical images of marbles. Computers and Geosciences, 22(5), 547–558.
|
|
|
J. Pladellorens, Joan Serrat, A. Castell and M.J. Yzuel. 1993. Using mathematical morphology to determine left ventricular contours..
|
|
|
J. Pladellorens, M.J. Yzuel, J. Castell and Joan Serrat. 1993. Calculo automatico del volumen del ventriculo izquierdo. Comparacion con expertos..
|
|
|
A. Pujol, Jordi Vitria, Felipe Lumbreras and Juan J. Villanueva. 2001. Topological principal component analysis for face encoding and recognition. PRL, 22(6-7), 769–776.
|
|