|
Hugo Berti, Angel Sappa and Osvaldo Agamennoni. 2008. Improved Dynamic Window Approach by Using Lyapunov Stability Criteria.
|
|
|
Joan Serrat, Ferran Diego and Felipe Lumbreras. 2008. Los faros delanteros a traves del objetivo.
|
|
|
Carme Julia, Angel Sappa and Felipe Lumbreras. 2008. Aprendiendo a recrear la realidad en 3D.
|
|
|
Enric Marti, J.Roncaries, Debora Gil, Aura Hernandez-Sabate, Antoni Gurgui and Ferran Poveda. 2015. PBL On Line: A proposal for the organization, part-time monitoring and assessment of PBL group activities.
|
|
|
Victor Santos, Angel Sappa and Miguel Oliveira. 2017. Special Issue on Autonomous Driving and Driver Assistance Systems. RAS, 91, 208–209.
|
|
|
Adrien Gaidon, Antonio Lopez and Florent Perronnin. 2018. The Reasonable Effectiveness of Synthetic Visual Data. IJCV, 126(9), 899–901.
|
|
|
Lluis Pere de las Heras, Ahmed Sheraz, Marcus Liwicki, Ernest Valveny and Gemma Sanchez. 2014. Statistical Segmentation and Structural Recognition for Floor Plan Interpretation. IJDAR, 17(3), 221–237.
Abstract: A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents.
|
|
|
Jiaolong Xu, Sebastian Ramos, David Vazquez and Antonio Lopez. 2016. Hierarchical Adaptive Structural SVM for Domain Adaptation. IJCV, 119(2), 159–178.
Abstract: A key topic in classification is the accuracy loss produced when the data distribution in the training (source) domain differs from that in the testing (target) domain. This is being recognized as a very relevant problem for many
computer vision tasks such as image classification, object detection, and object category recognition. In this paper, we present a novel domain adaptation method that leverages multiple target domains (or sub-domains) in a hierarchical adaptation tree. The core idea is to exploit the commonalities and differences of the jointly considered target domains.
Given the relevance of structural SVM (SSVM) classifiers, we apply our idea to the adaptive SSVM (A-SSVM), which only requires the target domain samples together with the existing source-domain classifier for performing the desired adaptation. Altogether, we term our proposal as hierarchical A-SSVM (HA-SSVM).
As proof of concept we use HA-SSVM for pedestrian detection, object category recognition and face recognition. In the former we apply HA-SSVM to the deformable partbased model (DPM) while in the rest HA-SSVM is applied to multi-category classifiers. We will show how HA-SSVM is effective in increasing the detection/recognition accuracy with respect to adaptation strategies that ignore the structure of the target data. Since, the sub-domains of the target data are not always known a priori, we shown how HA-SSVM can incorporate sub-domain discovery for object category recognition.
Keywords: Domain Adaptation; Pedestrian Detection
|
|
|
Carme Julia, Angel Sappa, Felipe Lumbreras, Joan Serrat and Antonio Lopez. 2011. Rank Estimation in Missing Data Matrix Problems. JMIV, 39(2), 140–160.
Abstract: A novel technique for missing data matrix rank estimation is presented. It is focused on matrices of trajectories, where every element of the matrix corresponds to an image coordinate from a feature point of a rigid moving object at a given frame; missing data are represented as empty entries. The objective of the proposed approach is to estimate the rank of a missing data matrix in order to fill in empty entries with some matrix completion method, without using or assuming neither the number of objects contained in the scene nor the kind of their motion. The key point of the proposed technique consists in studying the frequency behaviour of the individual trajectories, which are seen as 1D signals. The main assumption is that due to the rigidity of the moving objects, the frequency content of the trajectories will be similar after filling in their missing entries. The proposed rank estimation approach can be used in different computer vision problems, where the rank of a missing data matrix needs to be estimated. Experimental results with synthetic and real data are provided in order to empirically show the good performance of the proposed approach.
|
|
|
Carme Julia, Angel Sappa, Felipe Lumbreras, Joan Serrat and Antonio Lopez. 2008. Rank Estimation in 3D Multibody Motion Segmentation. Electronic Letters, 44(4), 279–280.
Abstract: A novel technique for rank estimation in 3D multibody motion segmentation is proposed. It is based on the study of the frequency spectra of moving rigid objects and does not use or assume a prior knowledge of the objects contained in the scene (i.e. number of objects and motion). The significance of rank estimation on multibody motion segmentation results is shown by using two motion segmentation algorithms over both synthetic and real data.
|
|