2024 |
|
Mohamed Ramzy Ibrahim, Robert Benavente, Daniel Ponsa and Felipe Lumbreras. 2024. SWViT-RRDB: Shifted Window Vision Transformer Integrating Residual in Residual Dense Block for Remote Sensing Super-Resolution. 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
Abstract: Remote sensing applications, impacted by acquisition season and sensor variety, require high-resolution images. Transformer-based models improve satellite image super-resolution but are less effective than convolutional neural networks (CNNs) at extracting local details, crucial for image clarity. This paper introduces SWViT-RRDB, a new deep learning model for satellite imagery super-resolution. The SWViT-RRDB, combining transformer with convolution and attention blocks, overcomes the limitations of existing models by better representing small objects in satellite images. In this model, a pipeline of residual fusion group (RFG) blocks is used to combine the multi-headed self-attention (MSA) with residual in residual dense block (RRDB). This combines global and local image data for better super-resolution. Additionally, an overlapping cross-attention block (OCAB) is used to enhance fusion and allow interaction between neighboring pixels to maintain long-range pixel dependencies across the image. The SWViT-RRDB model and its larger variants outperform state-of-the-art (SoTA) models on two different satellite datasets in terms of PSNR and SSIM.
|
|
2023 |
|
Mohamed Ramzy Ibrahim, Robert Benavente, Daniel Ponsa and Felipe Lumbreras. 2023. Unveiling the Influence of Image Super-Resolution on Aerial Scene Classification. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications.214–228. (LNCS.)
Abstract: Deep learning has made significant advances in recent years, and as a result, it is now in a stage where it can achieve outstanding results in tasks requiring visual understanding of scenes. However, its performance tends to decline when dealing with low-quality images. The advent of super-resolution (SR) techniques has started to have an impact on the field of remote sensing by enabling the restoration of fine details and enhancing image quality, which could help to increase performance in other vision tasks. However, in previous works, contradictory results for scene visual understanding were achieved when SR techniques were applied. In this paper, we present an experimental study on the impact of SR on enhancing aerial scene classification. Through the analysis of different state-of-the-art SR algorithms, including traditional methods and deep learning-based approaches, we unveil the transformative potential of SR in overcoming the limitations of low-resolution (LR) aerial imagery. By enhancing spatial resolution, more fine details are captured, opening the door for an improvement in scene understanding. We also discuss the effect of different image scales on the quality of SR and its effect on aerial scene classification. Our experimental work demonstrates the significant impact of SR on enhancing aerial scene classification compared to LR images, opening new avenues for improved remote sensing applications.
|
|
|
Xavier Soria, Yachuan Li, Mohammad Rouhani and Angel Sappa. 2023. Tiny and Efficient Model for the Edge Detection Generalization. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops.
Abstract: Most high-level computer vision tasks rely on low-level image operations as their initial processes. Operations such as edge detection, image enhancement, and super-resolution, provide the foundations for higher level image analysis. In this work we address the edge detection considering three main objectives: simplicity, efficiency, and generalization since current state-of-the-art (SOTA) edge detection models are increased in complexity for better accuracy. To achieve this, we present Tiny and Efficient Edge Detector (TEED), a light convolutional neural network with only 58K parameters, less than 0:2% of the state-of-the-art models. Training on the BIPED dataset takes less than 30 minutes, with each epoch requiring less than 5 minutes. Our proposed model is easy to train and it quickly converges within very first few epochs, while the predicted edge-maps are crisp and of high quality. Additionally, we propose a new dataset to test the generalization of edge detection, which comprises samples from popular images used in edge detection and image segmentation. The source code is available in https://github.com/xavysp/TEED.
|
|
|
Yi Xiao, Felipe Codevilla, Diego Porres and Antonio Lopez. 2023. Scaling Vision-Based End-to-End Autonomous Driving with Multi-View Attention Learning. International Conference on Intelligent Robots and Systems.
Abstract: On end-to-end driving, human driving demonstrations are used to train perception-based driving models by imitation learning. This process is supervised on vehicle signals (e.g., steering angle, acceleration) but does not require extra costly supervision (human labeling of sensor data). As a representative of such vision-based end-to-end driving models, CILRS is commonly used as a baseline to compare with new driving models. So far, some latest models achieve better performance than CILRS by using expensive sensor suites and/or by using large amounts of human-labeled data for training. Given the difference in performance, one may think that it is not worth pursuing vision-based pure end-to-end driving. However, we argue that this approach still has great value and potential considering cost and maintenance. In this paper, we present CIL++, which improves on CILRS by both processing higher-resolution images using a human-inspired HFOV as an inductive bias and incorporating a proper attention mechanism. CIL++ achieves competitive performance compared to models which are more costly to develop. We propose to replace CILRS with CIL++ as a strong vision-based pure end-to-end driving baseline supervised by only vehicle signals and trained by conditional imitation learning.
|
|
2022 |
|
Mohamed Ramzy Ibrahim, Robert Benavente, Felipe Lumbreras and Daniel Ponsa. 2022. 3DRRDB: Super Resolution of Multiple Remote Sensing Images using 3D Residual in Residual Dense Blocks. CVPR 2022 Workshop on IEEE Perception Beyond the Visible Spectrum workshop series (PBVS, 18th Edition).
Abstract: The rapid advancement of Deep Convolutional Neural Networks helped in solving many remote sensing problems, especially the problems of super-resolution. However, most state-of-the-art methods focus more on Single Image Super-Resolution neglecting Multi-Image Super-Resolution. In this work, a new proposed 3D Residual in Residual Dense Blocks model (3DRRDB) focuses on remote sensing Multi-Image Super-Resolution for two different single spectral bands. The proposed 3DRRDB model explores the idea of 3D convolution layers in deeply connected Dense Blocks and the effect of local and global residual connections with residual scaling in Multi-Image Super-Resolution. The model tested on the Proba-V challenge dataset shows a significant improvement above the current state-of-the-art models scoring a Corrected Peak Signal to Noise Ratio (cPSNR) of 48.79 dB and 50.83 dB for Near Infrared (NIR) and RED Bands respectively. Moreover, the proposed 3DRRDB model scores a Corrected Structural Similarity Index Measure (cSSIM) of 0.9865 and 0.9909 for NIR and RED bands respectively.
Keywords: Training; Solid modeling; Three-dimensional displays; PSNR; Convolution; Superresolution; Pattern recognition
|
|
2021 |
|
Diego Porres. 2021. Discriminator Synthesis: On reusing the other half of Generative Adversarial Networks. Machine Learning for Creativity and Design, Neurips Workshop.
Abstract: Generative Adversarial Networks have long since revolutionized the world of computer vision and, tied to it, the world of art. Arduous efforts have gone into fully utilizing and stabilizing training so that outputs of the Generator network have the highest possible fidelity, but little has gone into using the Discriminator after training is complete. In this work, we propose to use the latter and show a way to use the features it has learned from the training dataset to both alter an image and generate one from scratch. We name this method Discriminator Dreaming, and the full code can be found at this https URL.
|
|
|
Idoia Ruiz, Lorenzo Porzi, Samuel Rota Bulo, Peter Kontschieder and Joan Serrat. 2021. Weakly Supervised Multi-Object Tracking and Segmentation. IEEE Winter Conference on Applications of Computer Vision Workshops.125–133.
Abstract: We introduce the problem of weakly supervised MultiObject Tracking and Segmentation, i.e. joint weakly supervised instance segmentation and multi-object tracking, in which we do not provide any kind of mask annotation.
To address it, we design a novel synergistic training strategy by taking advantage of multi-task learning, i.e. classification and tracking tasks guide the training of the unsupervised instance segmentation. For that purpose, we extract weak foreground localization information, provided by
Grad-CAM heatmaps, to generate a partial ground truth to learn from. Additionally, RGB image level information is employed to refine the mask prediction at the edges of the
objects. We evaluate our method on KITTI MOTS, the most representative benchmark for this task, reducing the performance gap on the MOTSP metric between the fully supervised and weakly supervised approach to just 12% and 12.7 % for cars and pedestrians, respectively.
|
|
2020 |
|
Edgar Riba, D. Mishkin, Daniel Ponsa, E. Rublee and G. Bradski. 2020. Kornia: an Open Source Differentiable Computer Vision Library for PyTorch. IEEE Winter Conference on Applications of Computer Vision.
|
|
|
Idoia Ruiz and Joan Serrat. 2020. Rank-based ordinal classification. 25th International Conference on Pattern Recognition.8069–8076.
Abstract: Differently from the regular classification task, in ordinal classification there is an order in the classes. As a consequence not all classification errors matter the same: a predicted class close to the groundtruth one is better than predicting a farther away class. To account for this, most previous works employ loss functions based on the absolute difference between the predicted and groundtruth class labels. We argue that there are many cases in ordinal classification where label values are arbitrary (for instance 1. . . C, being C the number of classes) and thus such loss functions may not be the best choice. We instead propose a network architecture that produces not a single class prediction but an ordered vector, or ranking, of all the possible classes from most to least likely. This is thanks to a loss function that compares groundtruth and predicted rankings of these class labels, not the labels themselves. Another advantage of this new formulation is that we can enforce consistency in the predictions, namely, predicted rankings come from some unimodal vector of scores with mode at the groundtruth class. We compare with the state of the art ordinal classification methods, showing
that ours attains equal or better performance, as measured by common ordinal classification metrics, on three benchmark datasets. Furthermore, it is also suitable for a new task on image aesthetics assessment, i.e. most voted score prediction. Finally, we also apply it to building damage assessment from satellite images, providing an analysis of its performance depending on the degree of imbalance of the dataset.
|
|
|
Lorenzo Porzi, Markus Hofinger, Idoia Ruiz, Joan Serrat, Samuel Rota Bulo and Peter Kontschieder. 2020. Learning Multi-Object Tracking and Segmentation from Automatic Annotations. 33rd IEEE Conference on Computer Vision and Pattern Recognition.6845–6854.
Abstract: In this work we contribute a novel pipeline to automatically generate training data, and to improve over state-of-the-art multi-object tracking and segmentation (MOTS) methods. Our proposed track mining algorithm turns raw street-level videos into high-fidelity MOTS training data, is scalable and overcomes the need of expensive and time-consuming manual annotation approaches. We leverage state-of-the-art instance segmentation results in combination with optical flow predictions, also trained on automatically harvested training data. Our second major contribution is MOTSNet – a deep learning, tracking-by-detection architecture for MOTS – deploying a novel mask-pooling layer for improved object association over time. Training MOTSNet with our automatically extracted data leads to significantly improved sMOTSA scores on the novel KITTI MOTS dataset (+1.9%/+7.5% on cars/pedestrians), and MOTSNet improves by +4.1% over previously best methods on the MOTSChallenge dataset. Our most impressive finding is that we can improve over previous best-performing works, even in complete absence of manually annotated MOTS training data.
|
|