|
Antonio Esteban Lansaque, Carles Sanchez, Agnes Borras, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2016). "Stable Airway Center Tracking for Bronchoscopic Navigation " In 28th Conference of the international Society for Medical Innovation and Technology.
Abstract: Bronchoscopists use X‐ray fluoroscopy to guide bronchoscopes to the lesion to be biopsied without any kind of incisions. Reducing exposure to X‐ray is important for both patients and doctors but alternatives like electromagnetic navigation require specific equipment and increase the cost of the clinical procedure. We propose a guiding system based on the extraction of airway centers from intra‐operative videos. Such anatomical landmarks could be
matched to the airway centerline extracted from a pre‐planned CT to indicate the best path to the lesion. We present an extraction of lumen centers
from intra‐operative videos based on tracking of maximal stable regions of energy maps.
|
|
|
Antonio Esteban Lansaque, Carles Sanchez, Agnes Borras, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2016). "Stable Anatomical Structure Tracking for video-bronchoscopy Navigation " In 19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops.
Abstract: Bronchoscopy allows to examine the patient airways for detection of lesions and sampling of tissues without surgery. A main drawback in lung cancer diagnosis is the diculty to check whether the exploration is following the correct path to the nodule that has to be biopsied. The most extended guidance uses uoroscopy which implies repeated radiation of clinical sta and patients. Alternatives such as virtual bronchoscopy or electromagnetic navigation are very expensive and not completely robust to blood, mocus or deformations as to be extensively used. We propose a method that extracts and tracks stable lumen regions at dierent levels of the bronchial tree. The tracked regions are stored in a tree that encodes the anatomical structure of the scene which can be useful to retrieve the path to the lesion that the clinician should follow to do the biopsy. We present a multi-expert validation of our anatomical landmark extraction in 3 intra-operative ultrathin explorations.
Keywords: Lung cancer diagnosis; video-bronchoscopy; airway lumen detection; region tracking
|
|
|
Aura Hernandez-Sabate, Lluis Albarracin, Daniel Calvo, & Nuria Gorgorio. (2016). "EyeMath: Identifying Mathematics Problem Solving Processes in a RTS Video Game " In 5th International Conference Games and Learning Alliance (Vol. 10056, pp. 50–59).
Abstract: Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.
Keywords: Simulation environment; Automated Driving; Driver-Vehicle interaction
|
|
|
Saad Minhas, Aura Hernandez-Sabate, Shoaib Ehsan, Katerine Diaz, Ales Leonardis, Antonio Lopez, et al. (2016). "LEE: A photorealistic Virtual Environment for Assessing Driver-Vehicle Interactions in Self-Driving Mode " In 14th European Conference on Computer Vision Workshops (Vol. 9915, pp. 894–900).
Abstract: Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.
Keywords: Simulation environment; Automated Driving; Driver-Vehicle interaction
|
|
|
Antoni Gurgui, Debora Gil, Enric Marti, & Vicente Grau. (2016). "Left-Ventricle Basal Region Constrained Parametric Mapping to Unitary Domain " In 7th International Workshop on Statistical Atlases & Computational Modelling of the Heart (Vol. 10124, pp. 163–171).
Abstract: Due to its complex geometry, the basal ring is often omitted when putting different heart geometries into correspondence. In this paper, we present the first results on a new mapping of the left ventricle basal rings onto a normalized coordinate system using a fold-over free approach to the solution to the Laplacian. To guarantee correspondences between different basal rings, we imposed some internal constrained positions at anatomical landmarks in the normalized coordinate system. To prevent internal fold-overs, constraints are handled by cutting the volume into regions defined by anatomical features and mapping each piece of the volume separately. Initial results presented in this paper indicate that our method is able to handle internal constrains without introducing fold-overs and thus guarantees one-to-one mappings between different basal ring geometries.
Keywords: Laplacian; Constrained maps; Parameterization; Basal ring
|
|
|
Carles Sanchez, Debora Gil, Jorge Bernal, F. Javier Sanchez, Marta Diez-Ferrer, & Antoni Rosell. (2016). "Navigation Path Retrieval from Videobronchoscopy using Bronchial Branches " In 19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops (Vol. 9401, pp. 62–70).
Abstract: Bronchoscopy biopsy can be used to diagnose lung cancer without risking complications of other interventions like transthoracic needle aspiration. During bronchoscopy, the clinician has to navigate through the bronchial tree to the target lesion. A main drawback is the difficulty to check whether the exploration is following the correct path. The usual guidance using fluoroscopy implies repeated radiation of the clinician, while alternative systems (like electromagnetic navigation) require specific equipment that increases intervention costs. We propose to compute the navigated path using anatomical landmarks extracted from the sole analysis of videobronchoscopy images. Such landmarks allow matching the current exploration to the path previously planned on a CT to indicate clinician whether the planning is being correctly followed or not. We present a feasibility study of our landmark based CT-video matching using bronchoscopic videos simulated on a virtual bronchoscopy interactive interface.
Keywords: Bronchoscopy navigation; Lumen center; Brochial branches; Navigation path; Videobronchoscopy
|
|
|
Mireia Sole, Joan Blanco, Debora Gil, Oliver Valero, G. Fonseka, M. Lawrie, et al. (2017). "Chromosome Territories in Mice Spermatogenesis: A new three-dimensional methodology of study " In 11th European CytoGenesis Conference.
|
|
|
Carles Sanchez, Debora Gil, T. Gache, N. Koufos, Marta Diez-Ferrer, & Antoni Rosell. (2016). "SENSA: a System for Endoscopic Stenosis Assessment " In 28th Conference of the international Society for Medical Innovation and Technology.
Abstract: Documenting the severity of a static or dynamic Central Airway Obstruction (CAO) is crucial to establish proper diagnosis and treatment, predict possible treatment effects and better follow-up the patients. The subjective visual evaluation of a stenosis during video-bronchoscopy still remains the most common way to assess a CAO in spite of a consensus among experts for a need to standardize all calculations [1].
The Computer Vision Center in cooperation with the «Hospital de Bellvitge», has developed a System for Endoscopic Stenosis Assessment (SENSA), which computes CAO directly by analyzing standard bronchoscopic data without the need of using other imaging tecnologies.
|
|
|
Carles Sanchez, Antonio Esteban Lansaque, Agnes Borras, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2017). "Towards a Videobronchoscopy Localization System from Airway Centre Tracking " In 12th International Conference on Computer Vision Theory and Applications (pp. 352–359).
Abstract: Bronchoscopists use fluoroscopy to guide flexible bronchoscopy to the lesion to be biopsied without any kind of incision. Being fluoroscopy an imaging technique based on X-rays, the risk of developmental problems and cancer is increased in those subjects exposed to its application, so minimizing radiation is crucial. Alternative guiding systems such as electromagnetic navigation require specific equipment, increase the cost of the clinical procedure and still require fluoroscopy. In this paper we propose an image based guiding system based on the extraction of airway centres from intra-operative videos. Such anatomical landmarks are matched to the airway centreline extracted from a pre-planned CT to indicate the best path to the nodule. We present a
feasibility study of our navigation system using simulated bronchoscopic videos and a multi-expert validation of landmarks extraction in 3 intra-operative ultrathin explorations.
Keywords: Video-bronchoscopy; Lung cancer diagnosis; Airway lumen detection; Region tracking; Guided bronchoscopy navigation
|
|
|
Debora Gil, Oriol Ramos Terrades, Elisa Minchole, Carles Sanchez, Noelia Cubero de Frutos, Marta Diez-Ferrer, et al. (2017). "Classification of Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer " In 6th Workshop on Clinical Image-based Procedures: Translational Research in Medical Imaging (Vol. 10550, pp. 151–159).
Abstract: Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.
The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.
We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results.
|
|