|
Guillermo Torres, Jan Rodríguez Dueñas, Sonia Baeza, Antoni Rosell, Carles Sanchez, & Debora Gil. (2023). "Prediction of Malignancy in Lung Cancer using several strategies for the fusion of Multi-Channel Pyradiomics Images " In 7th Workshop on Digital Image Processing for Medical and Automotive Industry in the framework of SYNASC 2023.
Abstract: This study shows the generation process and the subsequent study of the representation space obtained by extracting GLCM texture features from computer-aided tomography (CT) scans of pulmonary nodules (PN). For this, data from 92 patients from the Germans Trias i Pujol University Hospital were used. The workflow focuses on feature extraction using Pyradiomics and the VGG16 Convolutional Neural Network (CNN). The aim of the study is to assess whether the data obtained have a positive impact on the diagnosis of lung cancer (LC). To design a machine learning (ML) model training method that allows generalization, we train SVM and neural network (NN) models, evaluating diagnosis performance using metrics defined at slice and nodule level.
|
|
|
Guillermo Torres, Debora Gil, Antoni Rosell, S. Mena, & Carles Sanchez. (2023)." Virtual Radiomics Biopsy for the Histological Diagnosis of Pulmonary Nodules" In 37th International Congress and Exhibition is organized by Computer Assisted Radiology and Surgery.
|
|
|
Sonia Baeza, Debora Gil, Carles Sanchez, Guillermo Torres, Ignasi Garcia Olive, Ignasi Guasch, et al. (2023)." Biopsia virtual radiomica para el diagnóstico histológico de nódulos pulmonares – Resultados intermedios del proyecto Radiolung" In SEPAR.
|
|
|
Debora Gil, Guillermo Torres, & Carles Sanchez. (2023)." Transforming radiomic features into radiological words" In IEEE International Symposium on Biomedical Imaging.
|
|
|
Pau Cano, Debora Gil, & Eva Musulen. (2023)." Towards automatic detection of helicobacter pylori in histological samples of gastric tissue" In IEEE International Symposium on Biomedical Imaging.
|
|
|
Guillermo Torres, Debora Gil, Antonio Rosell, Sonia Baeza, & Carles Sanchez. (2023)." A radiomic biopsy for virtual histology of pulmonary nodules" In IEEE International Symposium on Biomedical Imaging.
|
|
|
Debora Gil, Aura Hernandez-Sabate, Antoni Carol, Oriol Rodriguez, & Petia Radeva. (2005). "A Deterministic-Statistic Adventitia Detection in IVUS Images " In ESC Congress. ,Sweden (EU).
Abstract: Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.
Keywords: Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation
|
|
|
Joel Barajas, Jaume Garcia, Francesc Carreras, Sandra Pujades, & Petia Radeva. (2005). "Angle Images Using Gabor Filters in Cardiac Tagged MRI " In Proceeding of the 2005 conference on Artificial Intelligence Research and Development (pp. 107–114). Amsterdam, The Netherlands: IOS Press.
Abstract: Tagged Magnetic Resonance Imaging (MRI) is a non-invasive technique used to examine cardiac deformation in vivo. An Angle Image is a representation of a Tagged MRI which recovers the relative position of the tissue respect to the distorted tags. Thus cardiac deformation can be estimated. This paper describes a new approach to generate Angle Images using a bank of Gabor filters in short axis cardiac Tagged MRI. Our method improves the Angle Images obtained by global techniques, like HARP, with a local frequency analysis. We propose to use the phase response of a combination of a Gabor filters bank, and use it to find a more precise deformation of the left ventricle. We demonstrate the accuracy of our method over HARP by several experimental results.
Keywords: Angle Images, Gabor Filters, Harp, Tagged Mri
|
|
|
Aura Hernandez-Sabate, Debora Gil, & Petia Radeva. (2005). "On the usefulness of supervised learning for vessel border detection in IntraVascular Imaging " In Proceeding of the 2005 conference on Artificial Intelligence Research and Development (pp. 67–74). Amsterdam, The Netherlands: IOS Press.
Abstract: IntraVascular UltraSound (IVUS) imaging is a useful tool in diagnosis of cardiac diseases since sequences completely show the morphology of coronary vessels. Vessel borders detection, especially the external adventitia layer, plays a central role in morphological measures and, thus, their segmentation feeds development of medical imaging techniques. Deterministic approaches fail to yield optimal results due to the large amount of IVUS artifacts and vessel borders descriptors. We propose using classification techniques to learn the set of descriptors and parameters that best detect vessel borders. Statistical hypothesis test on the error between automated detections and manually traced borders by 4 experts show that our detections keep within inter-observer variability.
Keywords: classification; vessel border modelling; IVUS
|
|
|
Ernest Valveny, & Enric Marti. (1999). "Application of deformable template matching to symbol recognition in hand-written architectural draw " In Proceedings of the Fifth International Conference on. Bangalore (India).
Abstract: We propose to use deformable template matching as a new approach to recognize characters and lineal symbols in hand-written line drawings, instead of traditional methods based on vectorization and feature extraction. Bayesian formulation of the deformable template matching allows combining fidelity to the ideal shape of the symbol with maximum flexibility to get the best fit to the input image. Lineal nature of symbols can be exploited to define a suitable representation of models and the set of deformations to be applied to them. Matching, however, is done over the original binary image to avoid losing relevant features during vectorization. We have applied this method to hand-written architectural drawings and experimental results demonstrate that symbols with high distortions from ideal shape can be accurately identified.
|
|