|
Aura Hernandez-Sabate, Monica Mitiko, Sergio Shiguemi, & Debora Gil. (2010). "A validation protocol for assessing cardiac phase retrieval in IntraVascular UltraSound " In Computing in Cardiology (Vol. 37, pp. 899–902). IEEE.
Abstract: A good reliable approach to cardiac triggering is of utmost importance in obtaining accurate quantitative results of atherosclerotic plaque burden from the analysis of IntraVascular UltraSound. Although, in the last years, there has been an increase in research of methods for retrospective gating, there is no general consensus in a validation protocol. Many methods are based on quality assessment of longitudinal cuts appearance and those reporting quantitative numbers do not follow a standard protocol. Such heterogeneity in validation protocols makes faithful comparison across methods a difficult task. We propose a validation protocol based on the variability of the retrieved cardiac phase and explore the capability of several quality measures for quantifying such variability. An ideal detector, suitable for its application in clinical practice, should produce stable phases. That is, it should always sample the same cardiac cycle fraction. In this context, one should measure the variability (variance) of a candidate sampling with respect a ground truth (reference) sampling, since the variance would indicate how spread we are aiming a target. In order to quantify the deviation between the sampling and the ground truth, we have considered two quality scores reported in the literature: signed distance to the closest reference sample and distance to the right of each reference sample. We have also considered the residuals of the regression line of reference against candidate sampling. The performance of the measures has been explored on a set of synthetic samplings covering different cardiac cycle fractions and variabilities. From our simulations, we conclude that the metrics related to distances are sensitive to the shift considered while the residuals are robust against fraction and variabilities as far as one can establish a pair-wise correspondence between candidate and reference. We will further investigate the impact of false positive and negative detections in experimental data.
|
|
|
Aura Hernandez-Sabate, Petia Radeva, Antonio Tovar, & Debora Gil. (2006). "Vessel structures alignment by spectral analysis of ivus sequences " In Proc. of CVII, MICCAI Workshop (pp. 39–36). 1st International Wokshop on Computer Vision for Intravascular and Intracardiac Imaging (CVII’06). Copenhaguen (Denmark),.
Abstract: Three-dimensional intravascular ultrasound (IVUS) allows to visualize and obtain volumetric measurements of coronary lesions through an exploration of the cross sections and longitudinal views of arteries. However, the visualization and subsequent morpho-geometric measurements in IVUS longitudinal cuts are subject to distortion caused by periodic image/vessel motion around the IVUS catheter. Usually, to overcome the image motion artifact ECG-gating and image-gated approaches are proposed, leading to slowing the pullback acquisition or disregarding part of IVUS data. In this paper, we argue that the image motion is due to 3-D vessel geometry as well as cardiac dynamics, and propose a dynamic model based on the tracking of an elliptical vessel approximation to recover the rigid transformation and align IVUS images without loosing any IVUS data. We report an extensive validation with synthetic simulated data and in vivo IVUS sequences of 30 patients achieving an average reduction of the image artifact of 97% in synthetic data and 79% in real-data. Our study shows that IVUS alignment improves longitudinal analysis of the IVUS data and is a necessary step towards accurate reconstruction and volumetric measurements of 3-D IVUS.
|
|
|
Aura Hernandez-Sabate, David Rotger, & Debora Gil. (2008). "Image-based ECG sampling of IVUS sequences " In Proc. IEEE Ultrasonics Symp. IUS 2008 (pp. 1330–1333).
Abstract: Longitudinal motion artifacts in IntraVascular UltraSound (IVUS) sequences hinders a properly 3D reconstruction and vessel measurements. Most of current techniques base on the ECG signal to obtain a gated pullback without the longitudinal artifact by using a specific hardware or the ECG signal itself. The potential of IVUS images processing for phase retrieval still remains little explored. In this paper, we present a fast forward image-based algorithm to approach ECG sampling. Inspired on the fact that maximum and minimum lumen areas are related to end-systole and end-diastole, our cardiac phase retrieval is based on the analysis of tissue density of mass along the sequence. The comparison between automatic and manual phase retrieval (0.07 ± 0.07 mm. of error) encourages a deep validation contrasting with ECG signals.
Keywords: Longitudinal Motion; Image-based ECG-gating; Fourier analysis
|
|
|
Aura Hernandez-Sabate, Debora Gil, J. Mauri, & Petia Radeva. (2006). "Reducing cardiac motion in IVUS sequences " In Proceeding of Computers in Cardiology (Vol. 33, pp. 685–688).
Abstract: Cardiac vessel displacement is a main artifact in IVUS sequences. It hinders visualization of the main structures in an appropriate orientation and alignment and affects extracting vessel measurements. In this paper, we present a novel approach for image sequence alignment based on spectral analysis, which removes rigid dynamics, preserving at the same time the vessel geometry. First, we suppress the translation by taking, for each frame, the center of mass of the image as origin of coordinates. In polar coordinates with such point as origin, the rotation appears as a horizontal displacement. The translation induces a phase shift in the Fourier coefficients of two consecutive polar images. We estimate the phase by adjusting a regression plane to the phases of the principal frequencies. Experiments show that the presented strategy suppress cardiac motion regardless of the acquisition device. 1.
|
|
|
Aura Hernandez-Sabate, Debora Gil, Petia Radeva, & E.N.Nofrerias. (2004). "Anisotropic processing of image structures for adventitia detection in intravascular ultrasound images " In Proc. Computers in Cardiology (Vol. 31, pp. 229–232). Chicago (USA).
Abstract: The adventitia layer appears as a weak edge in IVUS images with a non-uniform grey level, which difficulties its detection. In order to enhance edges, we apply an anisotropic filter that homogenizes the grey level along the image significant structures (ridges, valleys and edges). A standard edge detector applied to the filtered image yields a set of candidate points prone to be unconnected. The final model is obtained by interpolating the former line segments along the tangent direction to the level curves of the filtered image with an anisotropic contour closing technique based on functional extension principles
|
|
|
Josep Llados, Horst Bunke, & Enric Marti. (1997). Using Cyclic String Matching to Find Rotational and Reflectional Symmetries in Shapes In Intelligent Robots: Sensing, Modeling and Planning (pp. 164–179). World Scientific Press.
Abstract: Dagstuhl Workshop
|
|
|
Josep Llados, Horst Bunke, & Enric Marti. (1996). "Using cyclic string matching to find rotational and reflectional symmetric shapes " In H. B. H. N. R.C. Bolles (Ed.), Intelligent Robots: Sensing, Modeling and Planning (Dagstuhl Workshop) (pp. 164–179). Saarbrucken (Germany).: World Scientific.
|
|
|
Josep Llados, Horst Bunke, & Enric Marti. (1996). "Structural Recognition of hand drawn floor plans " In VI National Symposium on Pattern Recognition and Image Analysis. Cordoba.
Abstract: A system to recognize hand drawn architectural drawings in a CAD environment has been deve- loped. In this paper we focus on its high level interpretation module. To interpret a floor plan, the system must identify several building elements, whose description is stored in a library of pat- terns, as well as their spatial relationships. We propose a structural approach based on subgraph isomorphism techniques to obtain a high-level interpretation of the document. The vectorized input document and the patterns to be recognized are represented by attributed graphs. Discrete relaxation techniques (AC4 algorithm) have been applied to develop the matching algorithm. The process has been divided in three steps: node labeling, local consistency and global consistency verification. The hand drawn creation causes disturbed line drawings with several accuracy errors, which must be taken into account. Here we have identified them and the AC4 algorithm has been adapted to manage them.
Keywords: Rotational Symmetry; Reflectional Symmetry; String Matching.
|
|
|
Josep Llados, Jaime Lopez-Krahe, Gemma Sanchez, & Enric Marti. (2000)." Interprétation de cartes et plans par mise en correspondance de graphes de attributs" In 12 Congrès Francophone AFRIF–AFIA (Vol. 3, pp. 225–234).
|
|
|
Josep Llados, & Enric Marti. (1997)." Playing with error-tolerant subgraph isomorphism in line drawings" In VII National Symposium on Pattern Recognition and image Analysis.
|
|