|
Debora Gil, & Guillermo Torres. (2020). "A multi-shape loss function with adaptive class balancing for the segmentation of lung structures " In 34th International Congress and Exhibition on Computer Assisted Radiology & Surgery.
|
|
|
Debora Gil, Oriol Ramos Terrades, & Raquel Perez. (2020). "Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution " In Women in Geometry and Topology.
|
|
|
Guillermo Torres, Jan Rodríguez Dueñas, Sonia Baeza, Antoni Rosell, Carles Sanchez, & Debora Gil. (2023). "Prediction of Malignancy in Lung Cancer using several strategies for the fusion of Multi-Channel Pyradiomics Images " In 7th Workshop on Digital Image Processing for Medical and Automotive Industry in the framework of SYNASC 2023.
Abstract: This study shows the generation process and the subsequent study of the representation space obtained by extracting GLCM texture features from computer-aided tomography (CT) scans of pulmonary nodules (PN). For this, data from 92 patients from the Germans Trias i Pujol University Hospital were used. The workflow focuses on feature extraction using Pyradiomics and the VGG16 Convolutional Neural Network (CNN). The aim of the study is to assess whether the data obtained have a positive impact on the diagnosis of lung cancer (LC). To design a machine learning (ML) model training method that allows generalization, we train SVM and neural network (NN) models, evaluating diagnosis performance using metrics defined at slice and nodule level.
|
|
|
Guillermo Torres, Debora Gil, Antoni Rosell, S. Mena, & Carles Sanchez. (2023)." Virtual Radiomics Biopsy for the Histological Diagnosis of Pulmonary Nodules" In 37th International Congress and Exhibition is organized by Computer Assisted Radiology and Surgery.
|
|
|
Sonia Baeza, Debora Gil, Carles Sanchez, Guillermo Torres, Ignasi Garcia Olive, Ignasi Guasch, et al. (2023)." Biopsia virtual radiomica para el diagnóstico histológico de nódulos pulmonares – Resultados intermedios del proyecto Radiolung" In SEPAR.
|
|
|
Debora Gil, Guillermo Torres, & Carles Sanchez. (2023)." Transforming radiomic features into radiological words" In IEEE International Symposium on Biomedical Imaging.
|
|
|
Pau Cano, Debora Gil, & Eva Musulen. (2023)." Towards automatic detection of helicobacter pylori in histological samples of gastric tissue" In IEEE International Symposium on Biomedical Imaging.
|
|
|
Guillermo Torres, Debora Gil, Antonio Rosell, Sonia Baeza, & Carles Sanchez. (2023)." A radiomic biopsy for virtual histology of pulmonary nodules" In IEEE International Symposium on Biomedical Imaging.
|
|
|
Paula Fritzsche, C.Roig, Ana Ripoll, Emilio Luque, & Aura Hernandez-Sabate. (2006). "A Performance Prediction Methodology for Data-dependent Parallel Applications " In Proceedings of the IEEE International Conference on Cluster Computing (pp. 1–8).
Abstract: The increase in the use of parallel distributed architectures in order to solve large-scale scientific problems has generated the need for performance prediction for both deterministic applications and non-deterministic applications. In particular, the performance prediction of data dependent programs is an extremely challenging problem because for a specific issue the input datasets may cause different execution times. Generally, a parallel application is characterized as a collection of tasks and their interrelations. If the application is time-critical it is not enough to work with only one value per task, and consequently knowledge of the distribution of task execution times is crucial. The development of a new prediction methodology to estimate the performance of data-dependent parallel applications is the primary target of this study. This approach makes it possible to evaluate the parallel performance of an application without the need of implementation. A real data-dependent arterial structure detection application model is used to apply the methodology proposed. The predicted times obtained using the new methodology for genuine datasets are compared with predicted times that arise from using only one execution value per task. Finally, the experimental study shows that the new methodology generates more precise predictions.
|
|
|
Jaume Garcia, Francesc Carreras, Sandra Pujades, & Debora Gil. (2008). "Regional motion patterns for the Left Ventricle function assessment " In Proc. 19th Int. Conf. Pattern Recognition ICPR 2008 (pp. 1–4).
Abstract: Regional scores (e.g. strain, perfusion) of the Left Ventricle (LV) functionality are playing an increasing role in the diagnosis of cardiac diseases. A main limitation is the lack of normality models for complementary scores oriented to assessment of the LV integrity. This paper introduces an original framework based on a parametrization of the LV domain, which allows comparison across subjects of local physiological measures of different nature. We compute regional normality patterns in a feature space characterizing the LV function. We show the consistency of the model for the regional motion on healthy and hypokinetic pathological cases
|
|