|
Debora Gil, Petia Radeva, Jordi Saludes, & J. Mauri. (2000). "Automatic Segmentation of Artery Wall in Coronary IVUS Images: a Probabilistic Approach " In Proceedings of CIC’2000. Cambridge, Massachussets.
Abstract: Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results.
|
|
|
Debora Gil, Agnes Borras, Ruth Aris, Mariano Vazquez, Pierre Lafortune, & Guillame Houzeaux. (2012). "What a difference in biomechanics cardiac fiber makes " In Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges (Vol. 7746, pp. 253–260). Springer Berlin Heidelberg.
Abstract: Computational simulations of the heart are a powerful tool for a comprehensive understanding of cardiac function and its intrinsic relationship with its muscular architecture. Cardiac biomechanical models require a vector field representing the orientation of cardiac fibers. A wrong orientation of the fibers can lead to a
non-realistic simulation of the heart functionality. In this paper we explore the impact of the fiber information on the simulated biomechanics of cardiac muscular anatomy. We have used the John Hopkins database to perform a biomechanical simulation using both a synthetic benchmark fiber distribution and the data obtained experimentally from DTI. Results illustrate how differences in fiber orientation affect heart deformation along cardiac cycle.
|
|
|
Enric Marti, Carme Julia, & Debora Gil. (2007). "A PBL Experience in the Teaching of Computer Graphics " In XVII Congreso Español de Informàtica Gráfica (Vol. 25, pp. 95–103).
Abstract: Project-Based Learning (PBL) is an educational strategy to improve student’s learning capability that, in recent years, has had a progressive acceptance in undergraduate studies. This methodology is based on solving a problem or project in a student working group. In this way, PBL focuses on learning the necessary tools to correctly find a solution to given problems. Since the learning initiative is transferred to the student, the PBL method promotes students own abilities. This allows a better assessment of the true workload that carries out the student in the subject. It follows that the methodology conforms to the guidelines of the Bologna document, which quantifies the student workload in a subject by means of the European credit transfer system (ECTS). PBL is currently applied in undergraduate studies needing strong practical training such as medicine, nursing or law sciences. Although this is also the case in engineering studies, amazingly, few experiences have been reported. In this paper we propose to use PBL in the educational organization of the Computer Graphics subjects in the Computer Science degree. Our PBL project focuses in the development of a C++ graphical environment based on the OpenGL libraries for visualization and handling of different graphical objects. The starting point is a basic skeleton that already includes lighting functions, perspective projection with mouse interaction to change the point of view and three predefined objects. Students have to complete this skeleton by adding their own functions to solve the project. A total number of 10 projects have been proposed and successfully solved. The exercises range from human face rendering to articulated objects, such as robot arms or puppets. In the present paper we extensively report the statement and educational objectives for two of the projects: solar system visualization and a chess game. We report our earlier educational experience based on the standard classroom theoretical, problem and practice sessions and the reasons that motivated searching for other learning methods. We have mainly chosen PBL because it improves the student learning initiative. We have applied the PBL educational model since the beginning of the second semester. The student’s feedback increases in his interest for the subject. We present a comparative study of the teachers’ and students’ workload between PBL and the classic teaching approach, which suggests that the workload increase in PBL is not as high as it seems.
|
|
|
Enric Marti, Debora Gil, & Carme Julia. (2005). "A PBL experience in the teaching of Computer Graphics " In EUROGRAPHICS Proceedings (Vol. 5, pp. 95–103).
Abstract: Project-Based Learning (PBL) is an educational strategy to improve student’s learning capability that, in recent years, has had a progressive acceptance in undergraduate studies. This methodology is based on solving a problem or project in a student working group. In this way, PBL focuses on learning the necessary tools to correctly find a solution to given problems. Since the learning initiative is transferred to the student, the PBL method promotes students own abilities. This allows a better assessment of the true workload that carries out the student in the subject. It follows that the methodology conforms to the guidelines of the Bologna document, which quantifies the student workload in a subject by means of the European credit transfer system (ECTS). PBL is currently applied in undergraduate studies needing strong practical training such as medicine, nursing or law sciences. Although this is also the case in engineering studies, amazingly, few experiences have been reported. In this paper we propose to use PBL in the educational organization of the Computer Graphics subjects in the Computer Science degree. Our PBL project focuses in the development of a C++ graphical environment based on the OpenGL libraries for visualization and handling of different graphical objects. The starting point is a basic skeleton that already includes lighting functions, perspective projection with mouse interaction to change the point of view and three predefined objects. Students have to complete this skeleton by adding their own functions to solve the project. A total number of 10 projects have been proposed and successfully solved. The exercises range from human face rendering to articulated objects, such as robot arms or puppets. In the present paper we extensively report the statement and educational objectives for two of the projects: solar system visualization and a chess game. We report our earlier educational experience based on the standard classroom theoretical, problem and practice sessions and the reasons that motivated searching for other learning methods. We have mainly chosen PBL because it improves the student learning initiative. We have applied the PBL educational model since the beginning of the second semester. The student’s feedback increases in his interest for the subject. We present a comparative study of the teachers’ and students’ workload between PBL and the classic teaching approach, which suggests that the workload increase in PBL is not as high as it seems.
Keywords: project-based learning; computer graphics education; Open GL; rendering techniques; computer animation techniques; Graphics packages; Hierarchy and geometric transformations; Animation; Color; shading; shadowing and texture; fractals; hidden line/surface removal; Problem Based Learning
|
|
|
Enric Marti, Jordi Regincos, & Jaime Lopez-Krahe. (1991)." Interpretación de Dibujos Lineales a Mano Alzada Representando Escenas Tridimensionales" In Primer Congreso Español de Informática..
|
|
|
Enric Marti, Jordi Regincos, Jaime Lopez-Krahe, & Juan J.Villanueva. (1991)." A system for interpretation of hand line drawings as three-dimensional scene for CAD input" In Proceedings of the First International Conference on Document Analysis and Recognition (pp. 472–480).
|
|
|
Enric Marti, Jordi Regincos, Jaime Lopez-Krahe, & Juan J.Villanueva. (1992)." Interpretación de dibujos lineales a mano alzada como objetos 3D" In V Simposium Nacional de Reconocimiento de Formas y Análisis de Imágenes. València.
|
|
|
Ernest Valveny, Ricardo Toledo, Ramon Baldrich, & Enric Marti. (2002)." Combining recognition-based in segmentation-based approaches for graphic symol recognition using deformable template matching" In Proceeding of the Second IASTED International Conference Visualization, Imaging and Image Proceesing VIIP 2002 (502–507).
|
|
|
Ernest Valveny, & Enric Marti. (2001). "Learning of structural descriptions of graphic symbols using deformable template matching " In Proc. Sixth Int Document Analysis and Recognition Conf (pp. 455–459).
Abstract: Accurate symbol recognition in graphic documents needs an accurate representation of the symbols to be recognized. If structural approaches are used for recognition, symbols have to be described in terms of their shape, using structural relationships among extracted features. Unlike statistical pattern recognition, in structural methods, symbols are usually manually defined from expertise knowledge, and not automatically infered from sample images. In this work we explain one approach to learn from examples a representative structural description of a symbol, thus providing better information about shape variability. The description of a symbol is based on a probabilistic model. It consists of a set of lines described by the mean and the variance of line parameters, respectively providing information about the model of the symbol, and its shape variability. The representation of each image in the sample set as a set of lines is achieved using deformable template matching.
|
|
|
Ernest Valveny, & Enric Marti. (2000). "Hand-drawn symbol recognition in graphic documents using deformable template matching and a Bayesian framework " In Proc. 15th Int Pattern Recognition Conf (Vol. 2, pp. 239–242).
Abstract: Hand-drawn symbols can take many different and distorted shapes from their ideal representation. Then, very flexible methods are needed to be able to handle unconstrained drawings. We propose here to extend our previous work in hand-drawn symbol recognition based on a Bayesian framework and deformable template matching. This approach gets flexibility enough to fit distorted shapes in the drawing while keeping fidelity to the ideal shape of the symbol. In this work, we define the similarity measure between an image and a symbol based on the distance from every pixel in the image to the lines in the symbol. Matching is carried out using an implementation of the EM algorithm. Thus, we can improve recognition rates and computation time with respect to our previous formulation based on a simulated annealing algorithm.
|
|