|
Esmitt Ramirez, Carles Sanchez, Agnes Borras, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2018). "Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy " In OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis (Vol. 11041).
Abstract: Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems.
Keywords: Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification
|
|
|
Mireia Sole, Joan Blanco, Debora Gil, Oliver Valero, G. Fonseka, M. Lawrie, et al. (2017). "Chromosome Territories in Mice Spermatogenesis: A new three-dimensional methodology of study " In 11th European CytoGenesis Conference.
|
|
|
David Roche, Debora Gil, & Jesus Giraldo. (2012). "Assessing agonist efficacy in an uncertain Em world " In A. Christopoulus and M. Bouvier (Ed.), 40th Keystone Symposia on mollecular and celular biology (79). Keystone Symposia.
Abstract: The operational model of agonism has been widely used for the analysis of agonist action since its formulation in 1983. The model includes the Em parameter, which is defined as the maximum response of the system. The methods for Em estimation provide Em values not significantly higher than the maximum responses achieved by full agonists. However, it has been found that that some classes of compounds as, for instance, superagonists and positive allosteric modulators can increase the full agonist maximum response, implying upper limits for Em and thereby posing doubts on the validity of Em estimates. Because of the correlation between Em and operational efficacy, τ, wrong Em estimates will yield wrong τ estimates.
In this presentation, the operational model of agonism and various methods for the simulation of allosteric modulation will be analyzed. Alternatives for curve fitting will be presented and discussed.
|
|
|
Enric Marti, Debora Gil, & Carme Julia. (2005). "A PBL experience in the teaching of Computer Graphics " In EUROGRAPHICS Proceedings (Vol. 5, pp. 95–103).
Abstract: Project-Based Learning (PBL) is an educational strategy to improve student’s learning capability that, in recent years, has had a progressive acceptance in undergraduate studies. This methodology is based on solving a problem or project in a student working group. In this way, PBL focuses on learning the necessary tools to correctly find a solution to given problems. Since the learning initiative is transferred to the student, the PBL method promotes students own abilities. This allows a better assessment of the true workload that carries out the student in the subject. It follows that the methodology conforms to the guidelines of the Bologna document, which quantifies the student workload in a subject by means of the European credit transfer system (ECTS). PBL is currently applied in undergraduate studies needing strong practical training such as medicine, nursing or law sciences. Although this is also the case in engineering studies, amazingly, few experiences have been reported. In this paper we propose to use PBL in the educational organization of the Computer Graphics subjects in the Computer Science degree. Our PBL project focuses in the development of a C++ graphical environment based on the OpenGL libraries for visualization and handling of different graphical objects. The starting point is a basic skeleton that already includes lighting functions, perspective projection with mouse interaction to change the point of view and three predefined objects. Students have to complete this skeleton by adding their own functions to solve the project. A total number of 10 projects have been proposed and successfully solved. The exercises range from human face rendering to articulated objects, such as robot arms or puppets. In the present paper we extensively report the statement and educational objectives for two of the projects: solar system visualization and a chess game. We report our earlier educational experience based on the standard classroom theoretical, problem and practice sessions and the reasons that motivated searching for other learning methods. We have mainly chosen PBL because it improves the student learning initiative. We have applied the PBL educational model since the beginning of the second semester. The student’s feedback increases in his interest for the subject. We present a comparative study of the teachers’ and students’ workload between PBL and the classic teaching approach, which suggests that the workload increase in PBL is not as high as it seems.
Keywords: project-based learning; computer graphics education; Open GL; rendering techniques; computer animation techniques; Graphics packages; Hierarchy and geometric transformations; Animation; Color; shading; shadowing and texture; fractals; hidden line/surface removal; Problem Based Learning
|
|
|
Antonio Esteban Lansaque, Carles Sanchez, Agnes Borras, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2016). "Stable Airway Center Tracking for Bronchoscopic Navigation " In 28th Conference of the international Society for Medical Innovation and Technology.
Abstract: Bronchoscopists use X‐ray fluoroscopy to guide bronchoscopes to the lesion to be biopsied without any kind of incisions. Reducing exposure to X‐ray is important for both patients and doctors but alternatives like electromagnetic navigation require specific equipment and increase the cost of the clinical procedure. We propose a guiding system based on the extraction of airway centers from intra‐operative videos. Such anatomical landmarks could be
matched to the airway centerline extracted from a pre‐planned CT to indicate the best path to the lesion. We present an extraction of lumen centers
from intra‐operative videos based on tracking of maximal stable regions of energy maps.
|
|
|
Jaume Garcia, Albert Andaluz, Debora Gil, & Francesc Carreras. (2010). "Decoupled External Forces in a Predictor-Corrector Segmentation Scheme for LV Contours in Tagged MR Images " In 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 4805–4808).
Abstract: Computation of functional regional scores requires proper identification of LV contours. On one hand, manual segmentation is robust, but it is time consuming and requires high expertise. On the other hand, the tag pattern in TMR sequences is a problem for automatic segmentation of LV boundaries. We propose a segmentation method based on a predictorcorrector (Active Contours – Shape Models) scheme. Special stress is put in the definition of the AC external forces. First, we introduce a semantic description of the LV that discriminates myocardial tissue by using texture and motion descriptors. Second, in order to ensure convergence regardless of the initial contour, the external energy is decoupled according to the orientation of the edges in the image potential. We have validated the model in terms of error in segmented contours and accuracy of regional clinical scores.
|
|
|
Patricia Marquez, H. Kause, A. Fuster, Aura Hernandez-Sabate, L. Florack, Debora Gil, et al. (2014). "Factors Affecting Optical Flow Performance in Tagging Magnetic Resonance Imaging " In 17th International Conference on Medical Image Computing and Computer Assisted Intervention (Vol. 8896, pp. 231–238). Springer International Publishing.
Abstract: Changes in cardiac deformation patterns are correlated with cardiac pathologies. Deformation can be extracted from tagging Magnetic Resonance Imaging (tMRI) using Optical Flow (OF) techniques. For applications of OF in a clinical setting it is important to assess to what extent the performance of a particular OF method is stable across dierent clinical acquisition artifacts. This paper presents a statistical validation framework, based on ANOVA, to assess the motion and appearance factors that have the largest in uence on OF accuracy drop.
In order to validate this framework, we created a database of simulated tMRI data including the most common artifacts of MRI and test three dierent OF methods, including HARP.
Keywords: Optical flow; Performance Evaluation; Synthetic Database; ANOVA; Tagging Magnetic Resonance Imaging
|
|
|
Jorge Bernal, Debora Gil, Carles Sanchez, & F. Javier Sanchez. (2014). "Discarding Non Informative Regions for Efficient Colonoscopy Image Analysis " In 1st MICCAI Workshop on Computer-Assisted and Robotic Endoscopy (Vol. 8899, pp. 1–10). Springer International Publishing.
Abstract: In this paper we present a novel polyp region segmentation method for colonoscopy videos. Our method uses valley information associated to polyp boundaries in order to provide an initial segmentation. This first segmentation is refined to eliminate boundary discontinuities caused by image artifacts or other elements of the scene. Experimental results over a publicly annotated database show that our method outperforms both general and specific segmentation methods by providing more accurate regions rich in polyp content. We also prove how image preprocessing is needed to improve final polyp region segmentation.
Keywords: Image Segmentation; Polyps, Colonoscopy; Valley Information; Energy Maps
|
|
|
Marta Ligero, Guillermo Torres, Carles Sanchez, Katerine Diaz, Raquel Perez, & Debora Gil. (2019). "Selection of Radiomics Features based on their Reproducibility " In 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 403–408).
Abstract: Dimensionality reduction is key to alleviate machine learning artifacts in clinical applications with Small Sample Size (SSS) unbalanced datasets. Existing methods rely on either the probabilistic distribution of training data or the discriminant power of the reduced space, disregarding the impact of repeatability and uncertainty in features.In the present study is proposed the use of reproducibility of radiomics features to select features with high inter-class correlation coefficient (ICC). The reproducibility includes the variability introduced in the image acquisition, like medical scans acquisition parameters and convolution kernels, that affects intensity-based features and tumor annotations made by physicians, that influences morphological descriptors of the lesion.For the reproducibility of radiomics features three studies were conducted on cases collected at Vall Hebron Oncology Institute (VHIO) on responders to oncology treatment. The studies focused on the variability due to the convolution kernel, image acquisition parameters, and the inter-observer lesion identification. The features selected were those features with a ICC higher than 0.7 in the three studies.The selected features based on reproducibility were evaluated for lesion malignancy classification using a different database. Results show better performance compared to several state-of-the-art methods including Principal Component Analysis (PCA), Kernel Discriminant Analysis via QR decomposition (KDAQR), LASSO, and an own built Convolutional Neural Network.
|
|
|
Aura Hernandez-Sabate, David Rotger, & Debora Gil. (2008). "Image-based ECG sampling of IVUS sequences " In Proc. IEEE Ultrasonics Symp. IUS 2008 (pp. 1330–1333).
Abstract: Longitudinal motion artifacts in IntraVascular UltraSound (IVUS) sequences hinders a properly 3D reconstruction and vessel measurements. Most of current techniques base on the ECG signal to obtain a gated pullback without the longitudinal artifact by using a specific hardware or the ECG signal itself. The potential of IVUS images processing for phase retrieval still remains little explored. In this paper, we present a fast forward image-based algorithm to approach ECG sampling. Inspired on the fact that maximum and minimum lumen areas are related to end-systole and end-diastole, our cardiac phase retrieval is based on the analysis of tissue density of mass along the sequence. The comparison between automatic and manual phase retrieval (0.07 ± 0.07 mm. of error) encourages a deep validation contrasting with ECG signals.
Keywords: Longitudinal Motion; Image-based ECG-gating; Fourier analysis
|
|