|
David Roche, Debora Gil, & Jesus Giraldo. (2013). "Multiple active receptor conformation, agonist efficacy and maximum effect of the system: the conformation-based operational model of agonism, " . Drug Discovery Today, 18(7-8), 365–371.
Abstract: The operational model of agonism assumes that the maximum effect a particular receptor system can achieve (the Em parameter) is fixed. Em estimates are above but close to the asymptotic maximum effects of endogenous agonists. The concept of Em is contradicted by superagonists and those positive allosteric modulators that significantly increase the maximum effect of endogenous agonists. An extension of the operational model is proposed that assumes that the Em parameter does not necessarily have a single value for a receptor system but has multiple values associated to multiple active receptor conformations. The model provides a mechanistic link between active receptor conformation and agonist efficacy, which can be useful for the analysis of agonist response under different receptor scenarios.
|
|
|
Sonia Baeza, Debora Gil, I.Garcia Olive, M.Salcedo, J.Deportos, Carles Sanchez, et al. (2022). "A novel intelligent radiomic analysis of perfusion SPECT/CT images to optimize pulmonary embolism diagnosis in COVID-19 patients " . EJNMMI Physics, 9(1, Article 84), 1–17.
Abstract: Background: COVID-19 infection, especially in cases with pneumonia, is associated with a high rate of pulmonary embolism (PE). In patients with contraindications for CT pulmonary angiography (CTPA) or non-diagnostic CTPA, perfusion single-photon emission computed tomography/computed tomography (Q-SPECT/CT) is a diagnostic alternative. The goal of this study is to develop a radiomic diagnostic system to detect PE based only on the analysis of Q-SPECT/CT scans.
Methods: This radiomic diagnostic system is based on a local analysis of Q-SPECT/CT volumes that includes both CT and Q-SPECT values for each volume point. We present a combined approach that uses radiomic features extracted from each scan as input into a fully connected classifcation neural network that optimizes a weighted crossentropy loss trained to discriminate between three diferent types of image patterns (pixel sample level): healthy lungs (control group), PE and pneumonia. Four types of models using diferent confguration of parameters were tested.
Results: The proposed radiomic diagnostic system was trained on 20 patients (4,927 sets of samples of three types of image patterns) and validated in a group of 39 patients (4,410 sets of samples of three types of image patterns). In the training group, COVID-19 infection corresponded to 45% of the cases and 51.28% in the test group. In the test group, the best model for determining diferent types of image patterns with PE presented a sensitivity, specifcity, positive predictive value and negative predictive value of 75.1%, 98.2%, 88.9% and 95.4%, respectively. The best model for detecting
pneumonia presented a sensitivity, specifcity, positive predictive value and negative predictive value of 94.1%, 93.6%, 85.2% and 97.6%, respectively. The area under the curve (AUC) was 0.92 for PE and 0.91 for pneumonia. When the results obtained at the pixel sample level are aggregated into regions of interest, the sensitivity of the PE increases to 85%, and all metrics improve for pneumonia.
Conclusion: This radiomic diagnostic system was able to identify the diferent lung imaging patterns and is a frst step toward a comprehensive intelligent radiomic system to optimize the diagnosis of PE by Q-SPECT/CT.
|
|
|
Debora Gil, & Petia Radeva. (2003). "Curvature Vector Flow to Assure Convergent Deformable Models for Shape Modelling " In B. Springer (Ed.), Energy Minimization Methods In Computer Vision And Pattern Recognition (Vol. 2683, pp. 357–372). Lecture Notes in Computer Science. Lisbon, PORTUGAL: Springer, Berlin.
Abstract: Poor convergence to concave shapes is a main limitation of snakes as a standard segmentation and shape modelling technique. The gradient of the external energy of the snake represents a force that pushes the snake into concave regions, as its internal energy increases when new inexion points are created. In spite of the improvement of the external energy by the gradient vector ow technique, highly non convex shapes can not be obtained, yet. In the present paper, we develop a new external energy based on the geometry of the curve to be modelled. By tracking back the deformation of a curve that evolves by minimum curvature ow, we construct a distance map that encapsulates the natural way of adapting to non convex shapes. The gradient of this map, which we call curvature vector ow (CVF), is capable of attracting a snake towards any contour, whatever its geometry. Our experiments show that, any initial snake condition converges to the curve to be modelled in optimal time.
Keywords: Initial condition; Convex shape; Non convex analysis; Increase; Segmentation; Gradient; Standard; Standards; Concave shape; Flow models; Tracking; Edge detection; Curvature
|
|
|
Debora Gil, Aura Hernandez-Sabate, Antoni Carol, Oriol Rodriguez, & Petia Radeva. (2005). "A Deterministic-Statistic Adventitia Detection in IVUS Images " In ESC Congress. ,Sweden (EU).
Abstract: Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.
Keywords: Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation
|
|
|
F.Guirado, Ana Ripoll, C.Roig, Aura Hernandez-Sabate, & Emilio Luque. (2006). "Exploiting Throughput for Pipeline Execution in Streaming Image Processing Applications " In UAB, E. N. W, & et al. (Eds.), Euro-Par 2006 Parallel Processing (Vol. 4128, pp. 1095–1105). Lecture Notes In Computer Science. Dresden, Germany (European Union): Springer-Verlag Berlin Heidelberg.
Abstract: There is a large range of image processing applications that act on an input sequence of image frames that are continuously received. Throughput is a key performance measure to be optimized when execu- ting them. In this paper we propose a new task replication methodology for optimizing throughput for an image processing application in the field of medicine. The results show that by applying the proposed methodo- logy we are able to achieve the desired throughput in all cases, in such a way that the input frames can be processed at any given rate.
Keywords: 12th International Euro–Par Conference
|
|
|
Enric Marti, Debora Gil, & Carme Julia. (2005). "A PBL experience in the teaching of Computer Graphics " In EUROGRAPHICS Proceedings (Vol. 5, pp. 95–103).
Abstract: Project-Based Learning (PBL) is an educational strategy to improve student’s learning capability that, in recent years, has had a progressive acceptance in undergraduate studies. This methodology is based on solving a problem or project in a student working group. In this way, PBL focuses on learning the necessary tools to correctly find a solution to given problems. Since the learning initiative is transferred to the student, the PBL method promotes students own abilities. This allows a better assessment of the true workload that carries out the student in the subject. It follows that the methodology conforms to the guidelines of the Bologna document, which quantifies the student workload in a subject by means of the European credit transfer system (ECTS). PBL is currently applied in undergraduate studies needing strong practical training such as medicine, nursing or law sciences. Although this is also the case in engineering studies, amazingly, few experiences have been reported. In this paper we propose to use PBL in the educational organization of the Computer Graphics subjects in the Computer Science degree. Our PBL project focuses in the development of a C++ graphical environment based on the OpenGL libraries for visualization and handling of different graphical objects. The starting point is a basic skeleton that already includes lighting functions, perspective projection with mouse interaction to change the point of view and three predefined objects. Students have to complete this skeleton by adding their own functions to solve the project. A total number of 10 projects have been proposed and successfully solved. The exercises range from human face rendering to articulated objects, such as robot arms or puppets. In the present paper we extensively report the statement and educational objectives for two of the projects: solar system visualization and a chess game. We report our earlier educational experience based on the standard classroom theoretical, problem and practice sessions and the reasons that motivated searching for other learning methods. We have mainly chosen PBL because it improves the student learning initiative. We have applied the PBL educational model since the beginning of the second semester. The student’s feedback increases in his interest for the subject. We present a comparative study of the teachers’ and students’ workload between PBL and the classic teaching approach, which suggests that the workload increase in PBL is not as high as it seems.
Keywords: project-based learning; computer graphics education; Open GL; rendering techniques; computer animation techniques; Graphics packages; Hierarchy and geometric transformations; Animation; Color; shading; shadowing and texture; fractals; hidden line/surface removal; Problem Based Learning
|
|
|
Oriol Rodriguez-Leor, J. Mauri, Eduard Fernandez-Nofrerias, C. Garcia, R. Villuendas, Vicente del Valle, et al. (2003)." Reconstruction of a spatio-temporal model of the intima layer from intravascular ultrasound sequences" . European Heart Journal, .
|
|
|
Alberto Hidalgo, Ferran Poveda, Enric Marti, Debora Gil, Albert Andaluz, Francesc Carreras, et al. (2012). "Evidence of continuous helical structure of the cardiac ventricular anatomy assessed by diffusion tensor imaging magnetic resonance multiresolution tractography " . European Radiology, 3(1), 361–362.
Abstract: Deep understanding of myocardial structure linking morphology and func- tion of the heart would unravel crucial knowledge for medical and surgical clinical procedures and studies. Diffusion tensor MRI provides a discrete measurement of the 3D arrangement of myocardial fibres by the observation of local anisotropic
diffusion of water molecules in biological tissues. In this work, we present a multi- scale visualisation technique based on DT-MRI streamlining capable of uncovering additional properties of the architectural organisation of the heart. Methods and Materials: We selected the John Hopkins University (JHU) Canine Heart Dataset, where the long axis cardiac plane is aligned with the scanner’s Z- axis. Their equipment included a 4-element passed array coil emitting a 1.5 T. For DTI acquisition, a 3D-FSE sequence is apply. We used 200 seeds for full-scale tractography, while we applied a MIP mapping technique for simplified tractographic reconstruction. In this case, we reduced each DTI 3D volume dimensions by order- two magnitude before streamlining.
Our simplified tractographic reconstruction method keeps the main geometric features of fibres, allowing for an easier identification of their global morphological disposition, including the ventricular basal ring. Moreover, we noticed a clearly visible helical disposition of the myocardial fibres, in line with the helical myocardial band ventricular structure described by Torrent-Guasp. Finally, our simplified visualisation with single tracts identifies the main segments of the helical ventricular architecture.
DT-MRI makes possible the identification of a continuous helical architecture of the myocardial fibres, which validates Torrent-Guasp’s helical myocardial band ventricular anatomical model.
|
|
|
Marta Diez-Ferrer, Debora Gil, Elena Carreño, Susana Padrones, Samantha Aso, Vanesa Vicens, et al. (2017). "Positive Airway Pressure-Enhanced CT to Improve Virtual Bronchoscopic Navigation " . European Respiratory Journal, .
|
|
|
Antoni Rosell, Sonia Baeza, S. Garcia-Reina, JL. Mate, Ignasi Guasch, I. Nogueira, et al. (2022). "Radiomics to increase the effectiveness of lung cancer screening programs. Radiolung preliminary results. " European Respiratory Journal, 60(66).
|
|