|
Mireia Sole, Joan Blanco, Debora Gil, G. Fonseka, Richard Frodsham, Oliver Valero, et al. (2017). "Is there a pattern of Chromosome territoriality along mice spermatogenesis? " In 3rd Spanish MeioNet Meeting Abstract Book (pp. 55–56).
|
|
|
Enric Marti, Carme Julia, & Debora Gil. (2007)." PBL en la docencia de gráficos por computador" (Vol. 1). Valladolid.
|
|
|
Aura Hernandez-Sabate, Lluis Albarracin, Daniel Calvo, & Nuria Gorgorio. (2016). "EyeMath: Identifying Mathematics Problem Solving Processes in a RTS Video Game " In 5th International Conference Games and Learning Alliance (Vol. 10056, pp. 50–59).
Abstract: Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.
Keywords: Simulation environment; Automated Driving; Driver-Vehicle interaction
|
|
|
J.A.Perez, Enric Marti, & Juan J.Villanueva. (1992)." Interfase de Usuario de Entrada de Datos 3D en un CAD de Cartografía Urbana a partir de Pares Estereoscópicos" In II Congreso Español de Informática Gráfica (pp. 47–60).
|
|
|
Katerine Diaz, Jesus Martinez del Rincon, & Aura Hernandez-Sabate. (2017). "Decremental generalized discriminative common vectors applied to images classification " . Knowledge-Based Systems, 131, 46–57.
Abstract: In this paper, a novel decremental subspace-based learning method called Decremental Generalized Discriminative Common Vectors method (DGDCV) is presented. The method makes use of the concept of decremental learning, which we introduce in the field of supervised feature extraction and classification. By efficiently removing unnecessary data and/or classes for a knowledge base, our methodology is able to update the model without recalculating the full projection or accessing to the previously processed training data, while retaining the previously acquired knowledge. The proposed method has been validated in 6 standard face recognition datasets, showing a considerable computational gain without compromising the accuracy of the model.
Keywords: Decremental learning; Generalized Discriminative Common Vectors; Feature extraction; Linear subspace methods; Classification
|
|
|
Oriol Rodriguez-Leor, J. Mauri, Eduard Fernandez-Nofrerias, M. Gomez, Antonio Tovar, L. Cano, et al. (2002)." Ecografia Intracoronaria: Segmentacio Automatica de area de la llum" . Revista Societat Catalana de Cardiologia, 4(4), 42.
|
|
|
Oriol Rodriguez-Leor, A. Carol, H. Tizon, Eduard Fernandez-Nofrerias, J. Mauri, Vicente del Valle, et al. (2005)." Model estadístic-determinístic per la segmentació de l adventicia en imatges d ecografía intracoronaria" . Rev Societat Catalana Cardiologia, 5, 41.
|
|
|
Aura Hernandez-Sabate, Petia Radeva, Antonio Tovar, & Debora Gil. (2006). "Vessel structures alignment by spectral analysis of ivus sequences " In Proc. of CVII, MICCAI Workshop (pp. 39–36). 1st International Wokshop on Computer Vision for Intravascular and Intracardiac Imaging (CVII’06). Copenhaguen (Denmark),.
Abstract: Three-dimensional intravascular ultrasound (IVUS) allows to visualize and obtain volumetric measurements of coronary lesions through an exploration of the cross sections and longitudinal views of arteries. However, the visualization and subsequent morpho-geometric measurements in IVUS longitudinal cuts are subject to distortion caused by periodic image/vessel motion around the IVUS catheter. Usually, to overcome the image motion artifact ECG-gating and image-gated approaches are proposed, leading to slowing the pullback acquisition or disregarding part of IVUS data. In this paper, we argue that the image motion is due to 3-D vessel geometry as well as cardiac dynamics, and propose a dynamic model based on the tracking of an elliptical vessel approximation to recover the rigid transformation and align IVUS images without loosing any IVUS data. We report an extensive validation with synthetic simulated data and in vivo IVUS sequences of 30 patients achieving an average reduction of the image artifact of 97% in synthetic data and 79% in real-data. Our study shows that IVUS alignment improves longitudinal analysis of the IVUS data and is a necessary step towards accurate reconstruction and volumetric measurements of 3-D IVUS.
|
|
|
Jaume Garcia, Petia Radeva, & Francesc Carreras. (2004). "Combining Spectral and Active Shape methods to Track Tagged MRI " In Recent Advances in Artificial Intelligence Research and Development (pp. 37–44). IOS Press.
Abstract: Tagged magnetic resonance is a very usefull and unique tool that provides a complete local and global knowledge of the left ventricle (LV) motion. In this article we introduce a method capable of tracking and segmenting the LV. Spectral methods are applied in order to obtain the so called HARP images which encode information about movement and are the base for LV point-tracking. For segmentation we use Active Shapes (ASM) that model LV shape variation in order to overcome possible local misplacements of the boundary. We finally show experiments on both synthetic and real data which appear to be very promising.
Keywords: MR; tagged MR; ASM; LV segmentation; motion estimation.
|
|
|
Ole Larsen, Petia Radeva, & Enric Marti. (1995). "Bounds on the optimal elasticity parameters for a snake " . Image Analysis and Processing, , 37–42.
Abstract: This paper develops a formalism by which an estimate for the upper and lower bounds for the elasticity parameters for a snake can be obtained. Objects different in size and shape give rise to different bounds. The bounds can be obtained based on an analysis of the shape of the object of interest. Experiments on synthetic images show a good correlation between the estimated behaviour of the snake and the one actually observed. Experiments on real X-ray images show that the parameters for optimal segmentation lie within the estimated bounds.
|
|