|
Ole Vilhelm-Larsen, Petia Radeva, & Enric Marti. (1995). "Guidelines for choosing optimal parameters of elasticity for snakes " In Computer Analysis Of Images And Patterns (Vol. 970, pp. 106–113). Lecture Notes in Computer Science.
Abstract: This paper proposes a guidance in the process of choosing and using the parameters of elasticity of a snake in order to obtain a precise segmentation. A new two step procedure is defined based on upper and lower bounds on the parameters. Formulas, by which these bounds can be calculated for real images where parts of the contour may be missing, are presented. Experiments on segmentation of bone structures in X-ray images have verified the usefulness of the new procedure.
|
|
|
Ole Larsen, Petia Radeva, & Enric Marti. (1995). "Bounds on the optimal elasticity parameters for a snake " . Image Analysis and Processing, , 37–42.
Abstract: This paper develops a formalism by which an estimate for the upper and lower bounds for the elasticity parameters for a snake can be obtained. Objects different in size and shape give rise to different bounds. The bounds can be obtained based on an analysis of the shape of the object of interest. Experiments on synthetic images show a good correlation between the estimated behaviour of the snake and the one actually observed. Experiments on real X-ray images show that the parameters for optimal segmentation lie within the estimated bounds.
|
|
|
Josep Llados, Horst Bunke, & Enric Marti. (1997). "Finding rotational symmetries by cyclic string matching " . Pattern recognition letters, 18(14), 1435–1442.
Abstract: Symmetry is an important shape feature. In this paper, a simple and fast method to detect perfect and distorted rotational symmetries of 2D objects is described. The boundary of a shape is polygonally approximated and represented as a string. Rotational symmetries are found by cyclic string matching between two identical copies of the shape string. The set of minimum cost edit sequences that transform the shape string to a cyclically shifted version of itself define the rotational symmetry and its order. Finally, a modification of the algorithm is proposed to detect reflectional symmetries. Some experimental results are presented to show the reliability of the proposed algorithm
Keywords: Rotational symmetry; Reflectional symmetry; String matching
|
|
|
Josep Llados, Horst Bunke, & Enric Marti. (1997). Using Cyclic String Matching to Find Rotational and Reflectional Symmetries in Shapes In Intelligent Robots: Sensing, Modeling and Planning (pp. 164–179). World Scientific Press.
Abstract: Dagstuhl Workshop
|
|
|
Josep Llados, Horst Bunke, & Enric Marti. (1996). "Using cyclic string matching to find rotational and reflectional symmetric shapes " In H. B. H. N. R.C. Bolles (Ed.), Intelligent Robots: Sensing, Modeling and Planning (Dagstuhl Workshop) (pp. 164–179). Saarbrucken (Germany).: World Scientific.
|
|
|
Josep Llados, Horst Bunke, & Enric Marti. (1996). "Structural Recognition of hand drawn floor plans " In VI National Symposium on Pattern Recognition and Image Analysis. Cordoba.
Abstract: A system to recognize hand drawn architectural drawings in a CAD environment has been deve- loped. In this paper we focus on its high level interpretation module. To interpret a floor plan, the system must identify several building elements, whose description is stored in a library of pat- terns, as well as their spatial relationships. We propose a structural approach based on subgraph isomorphism techniques to obtain a high-level interpretation of the document. The vectorized input document and the patterns to be recognized are represented by attributed graphs. Discrete relaxation techniques (AC4 algorithm) have been applied to develop the matching algorithm. The process has been divided in three steps: node labeling, local consistency and global consistency verification. The hand drawn creation causes disturbed line drawings with several accuracy errors, which must be taken into account. Here we have identified them and the AC4 algorithm has been adapted to manage them.
Keywords: Rotational Symmetry; Reflectional Symmetry; String Matching.
|
|
|
Josep Llados, Jaime Lopez-Krahe, & Enric Marti. (1997). "A system to understand hand-drawn floor plans using subgraph isomorphism and Hough transform " In Machine Vision and Applications (Vol. 10, pp. 150–158).
Abstract: Presently, man-machine interface development is a widespread research activity. A system to understand hand drawn architectural drawings in a CAD environment is presented in this paper. To understand a document, we have to identify its building elements and their structural properties. An attributed graph structure is chosen as a symbolic representation of the input document and the patterns to recognize in it. An inexact subgraph isomorphism procedure using relaxation labeling techniques is performed. In this paper we focus on how to speed up the matching. There is a building element, the walls, characterized by a hatching pattern. Using a straight line Hough transform (SLHT)-based method, we recognize this pattern, characterized by parallel straight lines, and remove from the input graph the edges belonging to this pattern. The isomorphism is then applied to the remainder of the input graph. When all the building elements have been recognized, the document is redrawn, correcting the inaccurate strokes obtained from a hand-drawn input.
Keywords: Line drawings – Hough transform – Graph matching – CAD systems – Graphics recognition
|
|
|
Josep Llados, Jaime Lopez-Krahe, Gemma Sanchez, & Enric Marti. (2000)." Interprétation de cartes et plans par mise en correspondance de graphes de attributs" In 12 Congrès Francophone AFRIF–AFIA (Vol. 3, pp. 225–234).
|
|
|
Josep Llados, & Enric Marti. (1999)." A graph-edit algorithm for hand-drawn graphical document recognition and their automatic introduction into CAD systems" . Machine Graphics & Vision, 8, 195–211.
|
|
|
Josep Llados, & Enric Marti. (1999)." Graph-edit algorithms for hand-drawn graphical document recognition and their automatic introduction" . Machine Graphics & Vision journal, special issue on Graph transformation, .
|
|