toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Spencer Low; Oliver Nina; Angel Sappa; Erik Blasch; Nathan Inkawhich edit  url
doi  openurl
  Title Multi-Modal Aerial View Image Challenge: Translation From Synthetic Aperture Radar to Electro-Optical Domain Results-PBVS 2023 Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 515-523  
  Keywords  
  Abstract This paper unveils the discoveries and outcomes of the inaugural iteration of the Multi-modal Aerial View Image Challenge (MAVIC) aimed at image translation. The primary objective of this competition is to stimulate research efforts towards the development of models capable of translating co-aligned images between multiple modalities. To accomplish the task of image translation, the competition utilizes images obtained from both synthetic aperture radar (SAR) and electro-optical (EO) sources. Specifically, the challenge centers on the translation from the SAR modality to the EO modality, an area of research that has garnered attention. The inaugural challenge demonstrates the feasibility of the task. The dataset utilized in this challenge is derived from the UNIfied COincident Optical and Radar for recognitioN (UNICORN) dataset. We introduce an new version of the UNICORN dataset that is focused on enabling the sensor translation task. Performance evaluation is conducted using a combination of measures to ensure high fidelity and high accuracy translations.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ LNS2023a Serial (down) 3913  
Permanent link to this record
 

 
Author Mingyi Yang; Luis Herranz; Fei Yang; Luka Murn; Marc Gorriz Blanch; Shuai Wan; Fuzheng Yang; Marta Mrak edit  url
doi  openurl
  Title Semantic Preprocessor for Image Compression for Machines Type Conference Article
  Year 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Visual content is being increasingly transmitted and consumed by machines rather than humans to perform automated content analysis tasks. In this paper, we propose an image preprocessor that optimizes the input image for machine consumption prior to encoding by an off-the-shelf codec designed for human consumption. To achieve a better trade-off between the accuracy of the machine analysis task and bitrate, we propose leveraging pre-extracted semantic information to improve the preprocessor’s ability to accurately identify and filter out task-irrelevant information. Furthermore, we propose a two-part loss function to optimize the preprocessor, consisted of a rate-task performance loss and a semantic distillation loss, which helps the reconstructed image obtain more information that contributes to the accuracy of the task. Experiments show that the proposed preprocessor can save up to 48.83% bitrate compared with the method without the preprocessor, and save up to 36.24% bitrate compared to existing preprocessors for machine vision.  
  Address Rodhes Islands; Greece; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICASSP  
  Notes MACO; LAMP Approved no  
  Call Number Admin @ si @ YHY2023 Serial (down) 3912  
Permanent link to this record
 

 
Author Yifan Wang; Luka Murn; Luis Herranz; Fei Yang; Marta Mrak; Wei Zhang; Shuai Wan; Marc Gorriz Blanch edit  url
doi  openurl
  Title Efficient Super-Resolution for Compression Of Gaming Videos Type Conference Article
  Year 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Due to the increasing demand for game-streaming services, efficient compression of computer-generated video is more critical than ever, especially when the available bandwidth is low. This paper proposes a super-resolution framework that improves the coding efficiency of computer-generated gaming videos at low bitrates. Most state-of-the-art super-resolution networks generalize over a variety of RGB inputs and use a unified network architecture for frames of different levels of degradation, leading to high complexity and redundancy. Since games usually consist of a limited number of fixed scenarios, we specialize one model for each scenario and assign appropriate network capacities for different QPs to perform super-resolution under the guidance of reconstructed high-quality luma components. Experimental results show that our framework achieves a superior quality-complexity trade-off compared to the ESRnet baseline, saving at most 93.59% parameters while maintaining comparable performance. The compression efficiency compared to HEVC is also improved by more than 17% BD-rate gain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICASSP  
  Notes LAMP; MACO Approved no  
  Call Number Admin @ si @ WMH2023 Serial (down) 3911  
Permanent link to this record
 

 
Author Yawei Li; Yulun Zhang; Radu Timofte; Luc Van Gool; Zhijun Tu; Kunpeng Du; Hailing Wang; Hanting Chen; Wei Li; Xiaofei Wang; Jie Hu; Yunhe Wang; Xiangyu Kong; Jinlong Wu; Dafeng Zhang; Jianxing Zhang; Shuai Liu; Furui Bai; Chaoyu Feng; Hao Wang; Yuqian Zhang; Guangqi Shao; Xiaotao Wang; Lei Lei; Rongjian Xu; Zhilu Zhang; Yunjin Chen; Dongwei Ren; Wangmeng Zuo; Qi Wu; Mingyan Han; Shen Cheng; Haipeng Li; Ting Jiang; Chengzhi Jiang; Xinpeng Li; Jinting Luo; Wenjie Lin; Lei Yu; Haoqiang Fan; Shuaicheng Liu; Aditya Arora; Syed Waqas Zamir; Javier Vazquez; Konstantinos G. Derpanis; Michael S. Brown; Hao Li; Zhihao Zhao; Jinshan Pan; Jiangxin Dong; Jinhui Tang; Bo Yang; Jingxiang Chen; Chenghua Li; Xi Zhang; Zhao Zhang; Jiahuan Ren; Zhicheng Ji; Kang Miao; Suiyi Zhao; Huan Zheng; YanYan Wei; Kangliang Liu; Xiangcheng Du; Sijie Liu; Yingbin Zheng; Xingjiao Wu; Cheng Jin; Rajeev Irny; Sriharsha Koundinya; Vighnesh Kamath; Gaurav Khandelwal; Sunder Ali Khowaja; Jiseok Yoon; Ik Hyun Lee; Shijie Chen; Chengqiang Zhao; Huabin Yang; Zhongjian Zhang; Junjia Huang; Yanru Zhang edit  url
doi  openurl
  Title NTIRE 2023 challenge on image denoising: Methods and results Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 1904-1920  
  Keywords  
  Abstract This paper reviews the NTIRE 2023 challenge on image denoising (σ = 50) with a focus on the proposed solutions and results. The aim is to obtain a network design capable to produce high-quality results with the best performance measured by PSNR for image denoising. Independent additive white Gaussian noise (AWGN) is assumed and the noise level is 50. The challenge had 225 registered participants, and 16 teams made valid submissions. They gauge the state-of-the-art for image denoising.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MACO; CIC Approved no  
  Call Number Admin @ si @ LZT2023 Serial (down) 3910  
Permanent link to this record
 

 
Author Danna Xue; Luis Herranz; Javier Vazquez; Yanning Zhang edit  url
doi  openurl
  Title Burst Perception-Distortion Tradeoff: Analysis and Evaluation Type Conference Article
  Year 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Burst image restoration attempts to effectively utilize the complementary cues appearing in sequential images to produce a high-quality image. Most current methods use all the available images to obtain the reconstructed image. However, using more images for burst restoration is not always the best option regarding reconstruction quality and efficiency, as the images acquired by handheld imaging devices suffer from degradation and misalignment caused by the camera noise and shake. In this paper, we extend the perception-distortion tradeoff theory by introducing multiple-frame information. We propose the area of the unattainable region as a new metric for perception-distortion tradeoff evaluation and comparison. Based on this metric, we analyse the performance of burst restoration from the perspective of the perception-distortion tradeoff under both aligned bursts and misaligned bursts situations. Our analysis reveals the importance of inter-frame alignment for burst restoration and shows that the optimal burst length for the restoration model depends both on the degree of degradation and misalignment.  
  Address Rodhes Islands; Greece; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICASSP  
  Notes CIC; MACO Approved no  
  Call Number Admin @ si @ XHV2023 Serial (down) 3909  
Permanent link to this record
 

 
Author Adarsh Tiwari; Sanket Biswas; Josep Llados edit  url
openurl 
  Title Can Pre-trained Language Models Help in Understanding Handwritten Symbols? Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14193 Issue Pages 199–211  
  Keywords  
  Abstract The emergence of transformer models like BERT, GPT-2, GPT-3, RoBERTa, T5 for natural language understanding tasks has opened the floodgates towards solving a wide array of machine learning tasks in other modalities like images, audio, music, sketches and so on. These language models are domain-agnostic and as a result could be applied to 1-D sequences of any kind. However, the key challenge lies in bridging the modality gap so that they could generate strong features beneficial for out-of-domain tasks. This work focuses on leveraging the power of such pre-trained language models and discusses the challenges in predicting challenging handwritten symbols and alphabets.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ TBL2023 Serial (down) 3908  
Permanent link to this record
 

 
Author Sergi Garcia Bordils; Dimosthenis Karatzas; Marçal Rusiñol edit  url
openurl 
  Title Accelerating Transformer-Based Scene Text Detection and Recognition via Token Pruning Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14192 Issue Pages 106-121  
  Keywords Scene Text Detection; Scene Text Recognition; Transformer Acceleration  
  Abstract Scene text detection and recognition is a crucial task in computer vision with numerous real-world applications. Transformer-based approaches are behind all current state-of-the-art models and have achieved excellent performance. However, the computational requirements of the transformer architecture makes training these methods slow and resource heavy. In this paper, we introduce a new token pruning strategy that significantly decreases training and inference times without sacrificing performance, striking a balance between accuracy and speed. We have applied this pruning technique to our own end-to-end transformer-based scene text understanding architecture. Our method uses a separate detection branch to guide the pruning of uninformative image features, which significantly reduces the number of tokens at the input of the transformer. Experimental results show how our network is able to obtain competitive results on multiple public benchmarks while running at significantly higher speeds.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ GKR2023a Serial (down) 3907  
Permanent link to this record
 

 
Author George Tom; Minesh Mathew; Sergi Garcia Bordils; Dimosthenis Karatzas; CV Jawahar edit  url
openurl 
  Title Reading Between the Lanes: Text VideoQA on the Road Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14192 Issue Pages 137–154  
  Keywords VideoQA; scene text; driving videos  
  Abstract Text and signs around roads provide crucial information for drivers, vital for safe navigation and situational awareness. Scene text recognition in motion is a challenging problem, while textual cues typically appear for a short time span, and early detection at a distance is necessary. Systems that exploit such information to assist the driver should not only extract and incorporate visual and textual cues from the video stream but also reason over time. To address this issue, we introduce RoadTextVQA, a new dataset for the task of video question answering (VideoQA) in the context of driver assistance. RoadTextVQA consists of 3, 222 driving videos collected from multiple countries, annotated with 10, 500 questions, all based on text or road signs present in the driving videos. We assess the performance of state-of-the-art video question answering models on our RoadTextVQA dataset, highlighting the significant potential for improvement in this domain and the usefulness of the dataset in advancing research on in-vehicle support systems and text-aware multimodal question answering. The dataset is available at http://cvit.iiit.ac.in/research/projects/cvit-projects/roadtextvqa.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ TMG2023 Serial (down) 3906  
Permanent link to this record
 

 
Author George Tom; Minesh Mathew; Sergi Garcia Bordils; Dimosthenis Karatzas; CV Jawahar edit  url
openurl 
  Title ICDAR 2023 Competition on RoadText Video Text Detection, Tracking and Recognition Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14188 Issue Pages 577–586  
  Keywords  
  Abstract In this report, we present the final results of the ICDAR 2023 Competition on RoadText Video Text Detection, Tracking and Recognition. The RoadText challenge is based on the RoadText-1K dataset and aims to assess and enhance current methods for scene text detection, recognition, and tracking in videos. The RoadText-1K dataset contains 1000 dash cam videos with annotations for text bounding boxes and transcriptions in every frame. The competition features an end-to-end task, requiring systems to accurately detect, track, and recognize text in dash cam videos. The paper presents a comprehensive review of the submitted methods along with a detailed analysis of the results obtained by the methods. The analysis provides valuable insights into the current capabilities and limitations of video text detection, tracking, and recognition systems for dashcam videos.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ TMG2023 Serial (down) 3905  
Permanent link to this record
 

 
Author Stepan Simsa; Milan Sulc; Michal Uricar; Yash Patel; Ahmed Hamdi; Matej Kocian; Matyas Skalicky; Jiri Matas; Antoine Doucet; Mickael Coustaty; Dimosthenis Karatzas edit   pdf
url  openurl
  Title DocILE Benchmark for Document Information Localization and Extraction Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14188 Issue Pages 147–166  
  Keywords Document AI; Information Extraction; Line Item Recognition; Business Documents; Intelligent Document Processing  
  Abstract This paper introduces the DocILE benchmark with the largest dataset of business documents for the tasks of Key Information Localization and Extraction and Line Item Recognition. It contains 6.7k annotated business documents, 100k synthetically generated documents, and nearly 1M unlabeled documents for unsupervised pre-training. The dataset has been built with knowledge of domain- and task-specific aspects, resulting in the following key features: (i) annotations in 55 classes, which surpasses the granularity of previously published key information extraction datasets by a large margin; (ii) Line Item Recognition represents a highly practical information extraction task, where key information has to be assigned to items in a table; (iii) documents come from numerous layouts and the test set includes zero- and few-shot cases as well as layouts commonly seen in the training set. The benchmark comes with several baselines, including RoBERTa, LayoutLMv3 and DETR-based Table Transformer; applied to both tasks of the DocILE benchmark, with results shared in this paper, offering a quick starting point for future work. The dataset, baselines and supplementary material are available at https://github.com/rossumai/docile.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ SSU2023 Serial (down) 3903  
Permanent link to this record
 

 
Author Mickael Cormier; Andreas Specker; Julio C. S. Jacques; Lucas Florin; Jurgen Metzler; Thomas B. Moeslund; Kamal Nasrollahi; Sergio Escalera; Jurgen Beyerer edit   pdf
url  doi
openurl 
  Title UPAR Challenge: Pedestrian Attribute Recognition and Attribute-based Person Retrieval – Dataset, Design, and Results Type Conference Article
  Year 2023 Publication 2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 166-175  
  Keywords  
  Abstract In civilian video security monitoring, retrieving and tracking a person of interest often rely on witness testimony and their appearance description. Deployed systems rely on a large amount of annotated training data and are expected to show consistent performance in diverse areas and gen-eralize well between diverse settings w.r.t. different view-points, illumination, resolution, occlusions, and poses for indoor and outdoor scenes. However, for such generalization, the system would require a large amount of various an-notated data for training and evaluation. The WACV 2023 Pedestrian Attribute Recognition and Attributed-based Per-son Retrieval Challenge (UPAR-Challenge) aimed to spot-light the problem of domain gaps in a real-world surveil-lance context and highlight the challenges and limitations of existing methods. The UPAR dataset, composed of 40 important binary attributes over 12 attribute categories across four datasets, was extended with data captured from a low-flying UAV from the P-DESTRE dataset. To this aim, 0.6M additional annotations were manually labeled and vali-dated. Each track evaluated the robustness of the competing methods to domain shifts by training on limited data from a specific domain and evaluating using data from unseen do-mains. The challenge attracted 41 registered participants, but only one team managed to outperform the baseline on one track, emphasizing the task's difficulty. This work de-scribes the challenge design, the adopted dataset, obtained results, as well as future directions on the topic.  
  Address Waikoloa; Hawai; USA; January 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACVW  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ CSJ2023 Serial (down) 3902  
Permanent link to this record
 

 
Author Dipam Goswami; J Schuster; Joost Van de Weijer; Didier Stricker edit   pdf
url  openurl
  Title Attribution-aware Weight Transfer: A Warm-Start Initialization for Class-Incremental Semantic Segmentation Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 3195-3204  
  Keywords  
  Abstract Attribution-aware Weight Transfer: A Warm-Start Initialization for Class-Incremental Semantic Segmentation. D Goswami, R Schuster, J van de Weijer, D Stricker. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023, pp. 3195-3204  
  Address Waikoloa; Hawai; USA; January 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes LAMP Approved no  
  Call Number Admin @ si @ GSW2023 Serial (down) 3901  
Permanent link to this record
 

 
Author Marcos V Conde; Florin Vasluianu; Javier Vazquez; Radu Timofte edit   pdf
url  openurl
  Title Perceptual image enhancement for smartphone real-time applications Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1848-1858  
  Keywords  
  Abstract Recent advances in camera designs and imaging pipelines allow us to capture high-quality images using smartphones. However, due to the small size and lens limitations of the smartphone cameras, we commonly find artifacts or degradation in the processed images. The most common unpleasant effects are noise artifacts, diffraction artifacts, blur, and HDR overexposure. Deep learning methods for image restoration can successfully remove these artifacts. However, most approaches are not suitable for real-time applications on mobile devices due to their heavy computation and memory requirements. In this paper, we propose LPIENet, a lightweight network for perceptual image enhancement, with the focus on deploying it on smartphones. Our experiments show that, with much fewer parameters and operations, our model can deal with the mentioned artifacts and achieve competitive performance compared with state-of-the-art methods on standard benchmarks. Moreover, to prove the efficiency and reliability of our approach, we deployed the model directly on commercial smartphones and evaluated its performance. Our model can process 2K resolution images under 1 second in mid-level commercial smartphones.  
  Address Waikoloa; Hawai; USA; January 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes MACO; CIC Approved no  
  Call Number Admin @ si @ CVV2023 Serial (down) 3900  
Permanent link to this record
 

 
Author Soumya Jahagirdar; Minesh Mathew; Dimosthenis Karatzas; CV Jawahar edit   pdf
url  openurl
  Title Watching the News: Towards VideoQA Models that can Read Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Video Question Answering methods focus on commonsense reasoning and visual cognition of objects or persons and their interactions over time. Current VideoQA approaches ignore the textual information present in the video. Instead, we argue that textual information is complementary to the action and provides essential contextualisation cues to the reasoning process. To this end, we propose a novel VideoQA task that requires reading and understanding the text in the video. To explore this direction, we focus on news videos and require QA systems to comprehend and answer questions about the topics presented by combining visual and textual cues in the video. We introduce the ``NewsVideoQA'' dataset that comprises more than 8,600 QA pairs on 3,000+ news videos obtained from diverse news channels from around the world. We demonstrate the limitations of current Scene Text VQA and VideoQA methods and propose ways to incorporate scene text information into VideoQA methods.  
  Address Waikoloa; Hawai; USA; January 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG Approved no  
  Call Number Admin @ si @ JMK2023 Serial (down) 3899  
Permanent link to this record
 

 
Author Weijia Wu; Yuzhong Zhao; Zhuang Li; Jiahong Li; Mike Zheng Shou; Umapada Pal; Dimosthenis Karatzas; Xiang Bai edit   pdf
url  openurl
  Title ICDAR 2023 Competition on Video Text Reading for Dense and Small Text Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14188 Issue Pages 405–419  
  Keywords Video Text Spotting; Small Text; Text Tracking; Dense Text  
  Abstract Recently, video text detection, tracking and recognition in natural scenes are becoming very popular in the computer vision community. However, most existing algorithms and benchmarks focus on common text cases (e.g., normal size, density) and single scenario, while ignore extreme video texts challenges, i.e., dense and small text in various scenarios. In this competition report, we establish a video text reading benchmark, named DSText, which focuses on dense and small text reading challenge in the video with various scenarios. Compared with the previous datasets, the proposed dataset mainly include three new challenges: 1) Dense video texts, new challenge for video text spotter. 2) High-proportioned small texts. 3) Various new scenarios, e.g., ‘Game’, ‘Sports’, etc. The proposed DSText includes 100 video clips from 12 open scenarios, supporting two tasks (i.e., video text tracking (Task 1) and end-to-end video text spotting (Task2)). During the competition period (opened on 15th February, 2023 and closed on 20th March, 2023), a total of 24 teams participated in the three proposed tasks with around 30 valid submissions, respectively. In this article, we describe detailed statistical information of the dataset, tasks, evaluation protocols and the results summaries of the ICDAR 2023 on DSText competition. Moreover, we hope the benchmark will promise the video text research in the community.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ WZL2023 Serial (down) 3898  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: