toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Clementine Decamps; Alexis Arnaud; Florent Petitprez; Mira Ayadi; Aurelia Baures; Lucile Armenoult; Sergio Escalera; Isabelle Guyon; Remy Nicolle; Richard Tomasini; Aurelien de Reynies; Jerome Cros; Yuna Blum; Magali Richard edit   pdf
url  openurl
  Title DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification Type Journal Article
  Year 2021 Publication BMC Bioinformatics Abbreviated Journal  
  Volume 22 Issue Pages 473  
  Keywords  
  Abstract (down) Quantification of tumor heterogeneity is essential to better understand cancer progression and to adapt therapeutic treatments to patient specificities. Bioinformatic tools to assess the different cell populations from single-omic datasets as bulk transcriptome or methylome samples have been recently developed, including reference-based and reference-free methods. Improved methods using multi-omic datasets are yet to be developed in the future and the community would need systematic tools to perform a comparative evaluation of these algorithms on controlled data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ DAP2021 Serial 3650  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: