toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Pau Riba; Josep Llados; Alicia Fornes edit   pdf
doi  openurl
  Title Error-tolerant coarse-to-fine matching model for hierarchical graphs Type Conference Article
  Year 2017 Publication 11th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition Abbreviated Journal  
  Volume 10310 Issue Pages 107-117  
  Keywords Graph matching; Hierarchical graph; Graph-based representation; Coarse-to-fine matching  
  Abstract Graph-based representations are effective tools to capture structural information from visual elements. However, retrieving a query graph from a large database of graphs implies a high computational complexity. Moreover, these representations are very sensitive to noise or small changes. In this work, a novel hierarchical graph representation is designed. Using graph clustering techniques adapted from graph-based social media analysis, we propose to generate a hierarchy able to deal with different levels of abstraction while keeping information about the topology. For the proposed representations, a coarse-to-fine matching method is defined. These approaches are validated using real scenarios such as classification of colour images and handwritten word spotting.  
  Address Anacapri; Italy; May 2017  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor Pasquale Foggia; Cheng-Lin Liu; Mario Vento  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GbRPR  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ RLF2017a Serial 2951  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: