toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Fernando Vilariño; Debora Gil; Petia Radeva edit   pdf
url  isbn
openurl 
  Title A Novel FLDA Formulation for Numerical Stability Analysis Type Book Chapter
  Year 2004 Publication Recent Advances in Artificial Intelligence Research and Development Abbreviated Journal  
  Volume 113 Issue Pages 77-84  
  Keywords Supervised Learning; Linear Discriminant Analysis; Numerical Stability; Computer Vision  
  Abstract Fisher Linear Discriminant Analysis (FLDA) is one of the most popular techniques used in classification applying dimensional reduction. The numerical scheme involves the inversion of the within-class scatter matrix, which makes FLDA potentially ill-conditioned when it becomes singular. In this paper we present a novel explicit formulation of FLDA in terms of the eccentricity ratio and eigenvector orientations of the within-class scatter matrix. An analysis of this function will characterize those situations where FLDA response is not reliable because of numerical instability. This can solve common situations of poor classification performance in computer vision.  
  Address  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Editor J. Vitrià, P. Radeva and I. Aguiló  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-1-58603-466-5 Medium  
  Area Expedition Conference  
  Notes MV;IAM;MILAB Approved no  
  Call Number IAM @ iam @ VGR2004 Serial 1663  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: