toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Oriol Pujol; Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title Fundamentals of Stop and Go active models Type Journal Article
  Year 2005 Publication Image and Vision Computing Abbreviated Journal  
  Volume 23 Issue 8 Pages 681-691  
  Keywords Deformable models; Geodesic snakes; Region-based segmentation  
  Abstract An efficient snake formulation should conform to the idea of picking the smoothest curve among all the shapes approximating an object of interest. In current geodesic snakes, the regularizing curvature also affects the convergence stage, hindering the latter at concave regions. In the present work, we make use of characteristic functions to define a novel geodesic formulation that decouples regularity and convergence. This term decoupling endows the snake with higher adaptability to non-convex shapes. Convergence is ensured by splitting the definition of the external force into an attractive vector field and a repulsive one. In our paper, we propose to use likelihood maps as approximation of characteristic functions of object appearance. The better efficiency and accuracy of our decoupled scheme are illustrated in the particular case of feature space-based segmentation.  
  Corporate Author Thesis  
  Publisher Butterworth-Heinemann Place of Publication Newton, MA, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0262-8856 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB;HuPBA Approved no  
  Call Number IAM @ iam @ PGR2005 Serial 1629  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: