|
Abstract |
Accurate computation of optical flow is a key-point in many image processing fields. Detection of anomalous and unpredicted agents (such as pedestrians, bikers or cars) in urban scenes or pathology discrimination in medical imaging sequences, to mention just a two. The above kinds sequences present two main difficulties for standard optical flow techniques. On one hand, variability in acquisition conditions (illuminance, medical imaging modality, ...) force an alterantive representation for images fulfilling the britghtness constancy constrain. On the hand, current variational schemes produce oversmoothed fields unable to properly model discontinuous behaviours such as collisions or functionless pathological areas. This master project explores the abilities and limitations of local and global optical flow approaches. The master student will put especial emphasis in the theoretical grounds behind in order to design a variational framework combining the theoretical advantages of the considered techniques. In particular an optical flow based on Gabor phase tracking (developed in the group for medical imaging) will be generalized to urban scenes. |
|