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1. Introduction

Image sequence analysis involves, among others, recognizing specific objects, computing
their position, tracking them or determining motion at each point of the image. Motion
perception analysis of a sequence is an important issue for security aids (such as detection
of anomalous and unpredicted agents in urban scenes), car driver assistance or pathology
discrimination. For that, an appropriate computation of motion is a standout field in
computer vision.

Motion can be rigid or elastic. On one hand, rigid motion is induced by the relative
movement between the scene and the camera, so, objects have the same shape along the
sequence. It is often present in natural scenes and its principal application is object tracking.
Rigid motion is commonly analyzed by applying techniques such as particle filters. On the
other hand, elastic motion keeps shape changes along the sequence. This implies that each
pixel of an object has a different motion, thus, motion estimation has to be local. Elastic
motion arises in biomedical images (tissue deformations). The milestone for computing
point wise local estimation of motion is the Optical Flow (OF) introduced by Gibson (1950)
and Gibson (1966).

OF is a tracking method for describing sequence motion. In particular, it is useful for
elastic deformation and object segmentation. OF is defined as the velocity vector field that
transforms one frame into the following one. It assumes that object appearance (given by
image intensity) keeps constant along sequence frames (Brightness Constancy Constraint,
BCC). Under such assumption, the vector field given by OF puts into correspondence pixels
in consecutive frames that have the same appearance (intensity).

In mathematical terms, these requirements are formulated as follows. Let I(x(t), y(t), t)
(I for short) be a sequence and (x(t0), y(t0), t0) an image pixel at time t0. If we assume the
BCC, the equation to solve is the following:

I(x(t+ t0), y(t+ t0), t+ t0) = I(x(t0), y(t0), t0) (1)

Considering that movements are small and the image sequence varies smoothly along the
spatial and temporal coordinates, we can use first-order Taylor expansion in time t0, ob-
taining:

Ixxt + Iyyt + It = 0 (2)

Since, OF is a vector field, we can define W = (xt, yt) = (u, v) and re-write the equation
(2) into the following compact form:

< ∇I,W > +It = 0 (3)

The above equation will be called OF equation.
The solution of (3) gives, for each pixel, the estimation of motion given by OF. The

application of OF formulation to real life sequences presents three weighty limitations:
BCC is not always fulfilled, sequences should have small temporal deformations and the
aperture problem.

In real life sequences, BCC is not always fulfilled due to illumination changes, physical
properties or image acquisition devices. Thus, the computed OF may not correspond to the
real motion. One way of ensuring the BCC is to either change the feature to keep constant
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along sequence frames or the representation space of the sequence (Barron et al., 1994;
Bruhn, 2006). There are two kinds of alternative features, region descriptors and edges and
corners descriptors. Region-based techniques (Anandan, 1989; Singh, 1990) match shift
region descriptors, while feature-based approaches (Buxton and Buxton, 1984; Waxman
et al., 1988; Wills et al., 2006) seek correspondences of characteristic image features such
as edges or corners. Besides, methods that change the image representation space replace
brightness by a filter response. In this case, the velocity vector field is defined from the
phase behavior of band-pass filter outputs in the Fourier domain and so they are called
phase-based approaches (Fleet and Jepson, 1990; Felsberg, 2004; Garcia, 2009).

The second limitation of the OF formulation is that, independently of the feature to keep
constant, OF equation is based on derivatives. Therefore, motion is not properly recovered
for large deformations and a high temporal resolution sequence is needed.

Finally, the OF computation is an ill-posed problem. Equation (3) introduces one
constraint with two unknowns so it can not be uniquely solved. Indeed equation (3) can
only recover motion along the image gradient (normal to the image level sets). That is, if
we express W = ω1∇I + ω2∇I> and develop the scalar product, we have:

< ∇I,W >= cos θ · ‖W‖ · ‖∇I‖ = ω1 · ‖∇I‖ (4)

for θ the angle between the motion vector and ∇I. By replacing (4) in (3) we obtain:

ω1 · ‖∇I‖+ It = 0⇔ ω1 =
−It
‖∇I‖

(5)

Figure 1 graphically shows the projection of W over ∇I.

Figure 1: Geometric interpretation of the OF.

This phenomenon, called the aperture problem, arises as a consequence of trying to
compute pixel wise motion with only one equation. We are converting a two dimensional
problem into a one dimensional one. Therefore, depending on the geometry of the object
and the kind of motion, OF equation can properly recover the motion or not. That is, in
points where motion is perpendicular to the image level set, OF equation recovers the whole
motion, while in points where motion is tangent to the image contours, the OF equation
does not recover motion at all. The remaining possible motions in a point will be partially
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recovered. Figure 2 shows three different scenarios. Blue arrows correspond to the motion
that OF equation recovers while red arrows correspond to the real motion of the object.
In figure 2a motion is perpendicular to the edge; therefore, blue arrows coincide with the
red ones, that is, we can recover the motion. In figure 2b motion is tangent to the edge,
consequently no motion is recovered. Finally, in figure 2c motion is oblique to the edges,
thus we will recover the normal component of the motion. Notice that, since in the corner
there are two different equations of the OF, motion can be properly recovered.

(a) (b) (c)

Figure 2: Consequences of the aperture problem. In red the motion of the object, and in
blue the solution given by the OF.

In order to minimize the aperture problem some outstanding local techniques propose an
equation system by assuming some properties of the vector field (Lucas and Kanade, 1981;
Fleet and Jepson, 1990). Lucas and Kanade (1981) is a differential approach that assumes
that motion is constant in a local neighborhood around each pixel and then, applying least
squares, computes the solution. Fleet and Jepson (1990) is a phase-based technique that
defines the velocity in terms of the gradient of the phase output of a Gabor filter. The
vector is the least squares solution of an equation system. In Section 2 there is a detailed
formulation of both methods.

Local techniques solve the aperture problem in some pixels but do not produce dense
flow fields. In contrast, variational techniques, developed for the first time by Horn and
Schunck (1981), produce dense flow fields by combining into a variational framework a data-
term (which assumes constancy in the object appearance) and a smoothness-term (which
models the behavior of the flow across the image). These approaches compute the OF (W )
by finding the minimum of the following energy functional:

ε(W ) =

∫∫
‖f(∇I,W )‖2L2︸ ︷︷ ︸
Data−Term

dx dy + α

∫∫
g(W,∇W, ...)︸ ︷︷ ︸

Smoothness−Term

dx dy (6)

where f is the data-term, g the smoothness-term, α is a constant regularization parameter,
‖ ·‖L2 is the L2 norm and ... denotes higher order terms. We remit the reader to Onkarappa
and Sappa (2009) for a wide review of variational approaches.

The data-term is a function that puts into correspondence one frame with the follow-
ing one. Existing approaches use either OF equation (Horn and Schunck, 1981; Nagel
and Enkelmann, 1986) or the system equation provided by local techniques such as Lucas
and Kanade (Bruhn et al., 2005) or Fleet and Jepson (Garcia, 2009). OF equation like
data-term still presents the aperture problem, so it needs to be solved in the variational
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framework together with the smoothness-term. In the case of local techniques, since data-
terms are own-solvable, the smoothness-term is introduced to regularize the velocity vector
field. Thus, they are combining the robustness of local methods and the density of the
variational ones.

The smoothness-term determines the global properties of the vector field. The first
approaches defined the smoothness-term in the L2 space to ensure differentiability (Horn
and Schunck, 1981; Nagel and Enkelmann, 1986; Bruhn et al., 2005). The main limitation is
that the solution can be over-regularized in cases that there are occlusions or discontinuities
in the velocity vector field. In order to overcome that, total variational methods define g in
the L1 space (Bruhn et al., 2005; Wedel et al., 2009). The problem of those techniques is
that there are functions from different spaces in the same variational framework, which is
mathematically inconsistent and also there is no robust theory which assures the reliability
of the solution.

Other techniques provide a trade-off between the data-term and the smoothness-term
through the parameter α. The bigger the α is, the smoother the flow field becomes. In most
cases, this parameter is constant and can be learned from a training set (Sun et al., 2010).
Other works (Nagel and Enkelmann, 1986; Garcia, 2009) consider that the smoothness-term
should play an important role in those points where the data-term does not provide motion
information. Nagel and Enkelmann (1986) weight the variational by means of ‖∇I‖. The
main idea is that ∇I = 0 indicates a flat region. Since in these points we can not recover
any motion, the scheme gives more weight to the smoothness-term. However ∇I may not
reflect all regions where the data-term can not properly recover motion. In this context
we claim that α has to reflect the theoretical conditions that assure a good solution of the
data-term. In this fashion, Garcia (2009) introduce the amplitude of the response of Gabor
Filters in the weights with an evident improvement on the computation of the OF. This
approach has been applied to medical images, in particular, to the assessment of the left
ventricle motion.

1.1 Goal and Contributions

The goal of this project is to determine the theoretical requirements of the local system
solutions of Lucas and Kanade (1981) and Fleet and Jepson (1990) to ensure their maximum
precision in order to incorporate them as weights into their variational frameworks.

The main contribution of this master thesis is to define variable weights which force
the above conditions and incorporate them into a variational formulation focusing on the
approaches developed by Bruhn et al. (2005) and Garcia (2009). We will put special empha-
sis on the OF computation developed in the group of visualization, graphics and modeling
(Garcia, 2009) in order to improve the weights and generalize them to urban scenes.

Moreover, in the same fashion of Barron et al. (1994), a database of synthetic images
has been created in order to analyze the consistency of the theoretical assumptions needed
to solve the local equation systems. Although there are well-known databases of sequences
(based on real environments) with ground-truth (Mid), the difference between the computed
OF and the ground-truth can come from the chosen technique or from errors inherent to
the sequence (like discretization errors) (Baker et al., 2009). Thus, we propose a synthetic
images set in order to avoid inherent errors.
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2. Methodology

In this section we describe the local systems defined by Lucas and Kanade (1981) and
Fleet and Jepson (1990). In addition, in order to define variable weights for the variational
formulations, we determine the theoretical requirements that ensure maximum precision in
the local system solutions.

2.1 Lucas-Kanade

Lucas-Kanade (LK) approach is based on the assumption that OF keeps constant in a
neighborhood of a pixel of size ρ. Given an image sequence I(x, y, t) where (x, y) is the
pixel location and t denotes the time, we can compute the OF, W = (u, v), by minimizing
the function:

εLK(W ) = Kρ ∗
(

(Ixu+ Iyv + It)
2
)

(7)

where Kρ is a Gaussian kernel of standard deviation ρ. It denotes a window function that
gives more influence to the constraints at the center of the neighborhood than those at the
boundary.

A minimum of equation (7) satisfies:{
∂εLK(W )

∂u = 0
∂εLK(W )

∂v = 0
(8)

and then, we obtain the following linear system:

ALK

(
u
v

)
=

(
Kρ ∗ (I2

x) Kρ ∗ (IxIy)
Kρ ∗ (IxIy) Kρ ∗ (I2

y )

)(
u
v

)
=

(
−Kρ ∗ (IxIt)
−Kρ ∗ (IyIt)

)
(9)

If we define W̃ = (u, v, 1), then, the LK approach can be re-written as follows:

εLK(W ) = W̃Kρ ∗ (∇I∇I>)W̃> (10)

where ∇I = (Ix, Iy, It).
Notice that ALK is the Structure Tensor (ST). The ST (Jähne, 1993) describes the

image local geometry and it is characterized by its eigenvectors and eigenvalues that are
defined as follows:

ALK =

(
e1
x e2

x

e1
y e2

y

)(
λ1 0
0 λ2

)(
e1
x e2

x

e1
y e2

y

)−1

(11)

Figure 3 shows the relation between the eigenvectors and eigenvalues. The eigenvalues
indicate the degree of anisotropy. In the case that eigenvalues are similar, i.e., λ1 ∼ λ2, the
eigenvectors of ST are isotropic, while different eigenvalues, i.e., λ1 � λ2 indicate that the
eigenvectors of ST are anisotropic.

Observe that the ST matrix can be interpreted as an average between motion along
direction of adjacent edges. In the corner of an image, since any motion has two well defined
components, the eigenvectors of the ST are isotropic, thus the aperture problem is solved
and motion can be recovered. On the contrary, in straight pure edges of an image, only the
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Figure 3: ST eigenvectors and eigenvalues. Isotropy and anisotropy.

component perpendicular to the edge direction is well defined, thus, the eigenvectors of the
ST are anisotropic. In this case, only when det(ALK) is bigger than a certain threshold the
aperture problem is solved. So the ST not always solve the aperture problem, but at least
is under control.

In addition, OF can not be computed in flat regions since there is no gradient.

From an algebraic point of view, LK system is solvable when the matrix ALK is non-
singular. For that, we propose as a Quality Measure (QM) to ensure the LK theoretical
assumptions the normalized determinant of the system matrix:

QMLK =
|det(ALK)|
‖det(ALK)‖∞

(12)

The QM is normalized in order to take values between 0 and 1.

We propose the following incorporation of variable weights in the variational framework
developed by Bruhn et al. (2005) that uses as a data-term the LK equation system:

ε(W ) =

∫∫
QMLKW̃Kρ ∗ (∇I∇I>)W̃> + (1−QMLK)‖∇W̃‖2 dx dy (13)

In this manner, when QMLK is close to zero, since the LK solution is not reliable, the
data-term of the variational framework has a low weight.

2.2 Harmonic Phase Flow

Fleet-Jepson (FJ) approach defines the velocity vector field in terms of the gradient of the
phase output of some Gabor Filters (GF) and then it solves the equation system by applying
least squares. We present a simplified version that considers just two GF (Garcia, 2009).
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θ1 = 0Rad θ2 = π
6Rad θ3 = π

3Rad θ4 = π
2Rad θ5 = 2π

3 Rad θ6 = 5π
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Figure 4: GF varying the orientation.

Scale=1 Scale=2 Scale=3 Scale=4 Scale=5

Figure 5: GF varying the scale.

A GF (Garcia, 2009) is the product of a complex sinusoid (which determines the fre-
quency), and a Gaussian kernel (which determines the scale):

G(x, y) = C · e−i2π(ωxx
d1

+
ωyy

d2
)︸ ︷︷ ︸

Frequency

· e
− (x′)2+(λy′)2

2σ2
x′︸ ︷︷ ︸

Scale

(14)

where,

• Frequency Parameters:

– ω = (ωx, ωy) is a vector that determines the frequency and orientation of the
pattern.

– d1 and d2 determine the width and the height of the window where the filter is
defined.

• Scale Parameters:

– x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ define the orientation of the
Gaussian envelope.

– σx′ determines the size of the Gaussian envelope along the x′ direction.

– λ specifies the ellipticity of the Gaussian envelope.

A GF is determined by its orientation (θ) and scale (s). We denote Gsi the GF with

scale s and orientation θi = (i−1)π
N Rad for N the total number of orientations. In figure 4

we show G4
i for i = 1, .., 6 for visualizing different orientations, while in figure 5 we show

the variation of scale by Gs1 for s = 1, ..., 5. We can observe how those parameters influence
on a GF, the orientation indicates the rotation of the GF whereas the scale indicates the
gaussian envelope size.
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Convolving the image I(x, y, t) with a GF Gsn results in an harmonic image

In(x, y, t) = Gsn ∗ I = an(x, y, t)eiΦ
n(x,y,t) (15)

where an(x, y, t) is the amplitude, Φn(x, y, t) is the phase of the harmonic image and n
denotes the orientation of the GF. In particular, we are projecting the GF over the contours
of the image. Thus, the orientation and the scale of the GF affect the amplitude and the
phase of the harmonic image. In the edges of an image, depending on its orientation and
the GF orientation, there will be response or not. The response is higher when the GF
orientation is perpendicular to the edge and lower when the GF orientation is parallel to it.
Thus, the amplitude takes higher values in the edges perpendicular to the GF orientation,
and lower values in the edges parallel to the GF orientation. If there is response in an edge,
regardless of the GF orientation, the phase gradient is parallel to the edge gradient. Besides,
in the corners of the image, regardless of the GF orientation, there is always response. The
amplitude always take high values and the phase is always oriented as the GF orientation.
Notice that the amplitude is an indicator of the response degree. Regarding the GF scale,
the bigger the scale is, the bigger the region response is. Thus, if we use a big scale, the
region of the image where the amplitude is non zero will be bigger. That is, using a big
scale we obtain global information whereas using small scale we obtain local information.

We have computed the harmonic images of a synthetic triangle varying the orientation
and the scale of the GF. In figure 6 there are the amplitudes of the harmonic images, whereas
in figure 7 there are its phases. We have used GF with scales from 1 to 5 (columns) and
6 different orientations (θi = iπ

6 for i = 0, ..., 5) (rows). In red the contour of the triangle.
We can see how the phase and the amplitude of an harmonic image vary depending on the
orientation and the scale of the GF. For instance, we can observe that using a GF with
orientation θi = π

2 , since the orientation is perpendicular to the horizontal edge, we have a
high amplitude response, and, the bigger the scale is, the bigger the region of the amplitude
response is. In addition, the regions where the phase is properly defined correspond to the
ones where the amplitude has a high response.

Given two different harmonic images Ii and Ij , we replace in the OF equation the
gradient of the phase of the harmonic images obtaining two equations. We call the following
equation system Harmonic Phase Flow (HPF):{

ε1 = Φi
xu+ Φi

yv + Φi
t = 0

ε2 = Φj
xu+ Φj

yv + Φj
t = 0

(16)

where Φk
x, Φk

y and Φk
t for k ∈ {i, j} are the partial derivatives of the phase at time t.

This equation system can be formulated as:

AHPF

(
u
v

)
=

(
Φ1
x Φ1

y

Φ2
x Φ2

y

)(
u
v

)
=

(
−Φ1

t

−Φ2
t

)
(17)

Notice that, in order to assure that AHPF is invertible we need ∇Φi and ∇Φj to be
linearly independent, for example perpendicular GF orientations. We consider two phases
fulfilling that the orientations of the Gabor filters of the harmonic images Ii and Ij are
perpendicular. We refer to those phases as complementary phases.
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Amplitude of the Harmonic Image of a Synthetic Triangle

θ
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Figure 6: Amplitude of the harmonic image of a synthetic triangle. Varying the scale from
1 to 5 (columns) and with 6 different orientations (rows). In red the contour of the triangle.
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Phase of the Harmonic Image of a Synthetic Triangle
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Figure 7: Phase of the harmonic image of a synthetic triangle. Varying the scale from 1 to
5 (columns) and with 6 different orientations (rows). In red the contour of the triangle.
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In order to ensure the solution of this local equation system we need AHPF to be
invertible. As well, the information given by the phase of the GF also has to be reliable, so,
the amplitude has to have a high response. We propose as a QM of the HPF local system

QMHPF = min

{
|det(AHPF )|
‖det(AHPF )‖∞

,min

{
ai

‖ai‖∞
,

aj

‖aj‖∞

}}
(18)

where ‖ · ‖∞ is the maximum norm over the whole image. The determinant and the am-
plitudes are normalized in order to be comparable when considering the minimum. Taking
the minimum between the determinant of the system matrix and the amplitudes we ensure
that the determinant will be high enough and also the amplitudes.

We propose the following incorporation of variable weights for the Harmonic Phase Flow
(HPF) developed by Garcia (2009):

ε(W ) =

∫∫
QM2

HPF

(
ε2

1 + ε2
2

)
+
(

1−QMHPF

)2
‖∇W‖2 dx dy (19)

In the case that QMHPF is close to zero the solution given by the local system HPF is not
reliable, therefore, we weight more the smoothness-term.

In addition to the weights incorporation, we have changed the way of choosing the
GF orientations. Initially only two orientations were chosen for the whole image, now,
we compute for each GF orientation the corresponding harmonic image obtaining In for
n ∈ {1, 2, ..., 12}, and its corresponding phase gradients. Then, for each pixel we choose,
the harmonic image that in this pixel has the highest amplitude response and the harmonic
image with complementary phase.

Notice that, unlike existing variational methods, our variable weights appear in both
data and smoothness terms. We consider that they are complementary terms so they are
linked in a variational scheme by this weight. The smoothness-term plays a strong role
when the data-term does not properly recover the motion, so it has to vanish.
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3. Experimental Settings

In order to analyze the QM consistency we have done two types of experiments:

• Theoretical Requirements Consistency: we study the relation between QM and
the accuracy of the local systems solutions.

• Optical Flow Accuracy: we compare LK and HPF OF computation accuracy and
we do a first qualitative experiment of the variational HPF.

Since we are not using any coarse-to-fine technique, we will use sequences which flow
magnitudes are between 1 and 4 pixels per frame.

In order to measure the accuracy between the ground-truth and the computed OF we
have used the End-Point Error (EE) , defined as follows:

EE = ‖WC −WGT ‖2 (20)

where WC is the computed OF and WGT is the ground-truth of the OF. We have chosen
the EE instead of the Angular Error because of the latter might not be reliable in the case
that the module of the OF is small (Baker et al., 2009).

Derivatives are computed using first four differences (Horn and Schunck, 1981) defined
as follows:

Ix(i, j, k) = 1
4

(
Ii,j+1,k − Ii,j,k + Ii+1,j+1,k − Ii+1,j,k + Ii,j+1,k+1

−Ii,j,k+1 + Ii+1,j+1,k+1 − Ii+1,j,k+1

)
Iy(i, j, k) = 1

1

(
Ii+1,j,k − Ii,j,k + Ii+1,j+1,k − Ii,j+1,k + Ii+1,j,k+1

−Ii,j,k+1 + Ii+1,j+1,k+1 − Ii,j+1,k+1

)
It(i, j, k) = 1

4

(
Ii,j,k+1 − Ii,j,k + Ii+1,j,k+1 − Ii+1,j,k + Ii,j+1,k+1

−Ii,j+1,k + Ii+1,j+1,k+1 − Ii+1,j+1,k

)
(21)

where Iz(i, j, k) is the partial derivative over the coordinate z ∈ {x, y, t} of the frame I in
the position (i, j) at time k and Ii,j,k is equivalent to I(i, j, k).

LK is computed with a Gaussian kernel of standard deviation ρ = 4. HPF GF are
computed using scale 2. We chose the GF with maximum amplitude among 12 possible
GF. The GF denoted by the number i for i = 1, ..., 12 corresponds to the GF with scale 2
and orientation θi = (i−1)π

12 .
In order to analyze the behavior of the solution of the local systems in a controlled

framework we have created a database of synthetic sequences. In the literature there are also
experiments with controlled synthetic sequences (Barron et al., 1994) but those sequences
do not emphasize the geometry neither the movements of the figures, for that reason we
have enlarged the range of movements and the corners profiles. We have created synthetic
sequences of triangles with different angles θj = j · 10◦ for j = 1, ..., 9. Since not only the
corner angle matters, also the aperture of the incident edges, we have considered three types
of corners:

• Unbalanced corner: for a given angle θj we consider the rectangle triangle with an
aperture of θj degrees (figure 8a). This kind of corners will be denoted by C1

j .
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• Balanced corner: for a given angle θj we consider the symmetric triangle with
respect to the horizontal axis with an aperture of θj degrees (figure 8b). This kind of
corners will be denoted by C2

j .

• Double Balanced corner: for a given angle θ2j we consider the symmetric triangle
with respect to the horizontal axis and with an aperture θ2j (figure 8c).

(a) (b) (c)

Figure 8: Synthetic data corner profiles. (a) Unbalanced Corner. (b) Balanced Corner.
(c) Double Balanced Corner.

Notice that, since the Unbalanced and the Balanced corners have the same angle (θj) we
can compare the behavior of the local system solutions in the corner, and also we can observe
if the inclination of the edges affect the solution given by the local systems. Meanwhile,
the Unbalanced and the Double Balanced corners are comparable in the inclination of the
edge.

To create the sequences we have interpolated the images with a sample of movements
covering all possible motions. The ground-truth for each pixel of the sequence is:

WGT = (cos(αi), sin(αi))

where αi = (i − 1)5◦ for i = 1, 2, ..., 72. We will denote a movement by αi. Observe that,
we are creating a continuous movement in a discrete space, so the ground-truth may not
coincide with the real movement of the sequence (Baker et al., 2009). Since each pixel has
only eight neighbors, if an object is moved in a sequence with a temporal resolution of
one pixel, we have only eight possible movements that assure that there are no differences
between the ground-truth and the real movement of the sequence (see figure 9).

We distinguish between two kind of sequences:

• Discrete sequences: sequences with movements αi = (i − 1)45◦ for i = 1, 2, ..., 8,
the ground-truth and the real movement of the sequence are the same.

• Continuous sequences: sequences with movements αi = (i−1)5◦ for i = 1, 2, ..., 72,
the ground-truth and real movement of the sequence may not coincide.
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Figure 9: Exact movements of one pixel displacement.

3.1 Theoretical Requirements Consistency

In order to assess the consistency of the theoretical requirements, EE should be compared to
QM for the synthetic discrete sequences. The stated requirements hold in the assumption
that EE decreasingly depends on QM, such dependency is by means of the correlation
between EE and QM (considered as random variables). Since the correlation might be non
linear, a statistical way of analyzing it is to compute the Spearman correlation coefficient
(ρ) (Pratt, 1991). ρ takes values from -1 to 1, indicating a positive correlation for value 1,
and a negative one for value -1.

We compute the solution of the local systems and its QM in the profile of the figure and
we study the correlation between EE and QM. In order to know if there is a decreasingly
dependency we have computed the confidence intervals of the hypothesis test:{

H0 : ρ ≥ 0
H1 : ρ < 0

rejecting the null hypothesis for p− val < 0.05, thus, we can assert that the dependency is
negative.

3.2 Optical Flow Accuracy

In order to analyze the behavior of the local systems in a more realistic context, we compute
for HPF and LK the ranges of Invalid Points (IP) and EE over the continuous sequences.

We denote IP that points of an image which have a QM < tol, notice that in these
points we can not assure the reliability of the solution. We compute the percentage of IP in

the contour of the corner obtaining IP
Ckj ,αi
cont . The range for all movements is the following:

IPCkj
= µ{IP

Ckj ,αi
cont , ∀i} ± σ{IP

Ckj ,αi
cont , ∀i}

And the range of IP for all movements and corners is computed as follows:

IPCk = µ{IP
Ckj ,αi
cont , ∀i, j} ± σ{IP

Ckj ,αi
cont , ∀i, j}

Besides, we compute the mean for the remaining non IP of the contour of a corner Ckj

with motion αi, obtaining EE
Ckj ,αi
cont . The range for all movements is computed as follows:

EECkj
= µ{EE

Ckj ,αi
cont , ∀i} ± σ{EE

Ckj ,αi
cont , ∀i}
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A measure of the accuracy of the local system solutions for a sample of all possible move-
ments and corners is the following:

EECk = µ{EE
Ckj ,αi
cont , ∀i, j} ± σ{EE

Ckj ,αi
cont , ∀i, j}

Moreover, in order to illustrate the improvements of the varying weights in the vari-
ational framework, we have compared the original HPF and the improved HPF applying
them to real image sequences. As a first step we present qualitative results by means of
color flow coding (Baker et al., 2009). We have considered the direction of the OF solution,
that is, all vectors of the computed OF are normalized.

We apply the original HPF and the improved HPF to the Army sequence (obtained from
Mid) that contains several independently moving objects. This sequence flow magnitudes
are not higher than 4 pixels per frame. Images are 584× 388 pixels. In addition we apply
both methods to the Tram sequence (obtained from Onv) that contains a tram’s driver
view. The temporal resolution is quite low although we do not know the maximum flow
magnitude since there is no ground-truth for this sequence. Images are 704× 576 pixels.
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4. Results

4.1 Theoretical Requirements Consistency

Figures 10, 11 and 12 show the behavior of EE and QM for HPF and LK local systems in
the contour of three different angles (30◦, 60◦ and 90◦ respectively) and motion α0 = 0◦

(horizontal motion). In the first column we show the two most representative harmonic
images given by the selected GF at each edge of the figure. We also plot in red the depicted
contour of the corner, and in the text we have the GF orientation. In the second column
for HPF and in the third one for LK, we have over all points of the contour the QM in red
and the EE in blue. The contour of the corner goes from the bottom right of the figure to
the top right. For both plots the black vertical line indicates the corner and blue crosses
indicate that the matrix of the local system is singular, that is, EE is NaN. In the second
column, we have plot the number of the selected GF divided by ten in green. In order to
compare across the different methods all measures have been normalized.

In these plots there are some features that deserve special attention. We expect to have
singular equation systems in the edges of the images and be able to compute the OF only
in the corners. But observe that we can recover the OF in the corners and also in some
edges. In the corners, we have the best motion recovery and a high QM. Figure 12 for the
unbalanced corner shows a clear example. Regarding to the edges, since the images are in
a discrete domain, the oblique edges are stepped and the horizontal and vertical edges are
straight pure lines. LK can recover motion in oblique edges but not in straight ones. Figure
10 for the balanced corner shows an example, since we have a oblique and a straight edge.
Figure 12 for the double balanced corner is a straight edge, thus LK has blue crosses along
the whole contour, the QM, since it is normalized, seems that takes high values, but its
maximum value is 4.49 × 10−16 which is really low. Besides, in the case of HPF we have
recovered motion along all contours, this is because we are computing the solution in the
Fourier domain. So, we are computing the solution over a periodic image and we have the
influence of the contiguous images, so we can recover motion over all edges.

In addition, since the geometric properties of the unbalanced and the balanced corner
are the same, we expect the same behavior of the solution. But the images are in the
discrete domain, thus, the unbalanced and the balanced corner differ in the edges geometry.
The unbalanced corner has an oblique and a straight edge and the balanced corner has two
oblique edges. So, the behavior of the local systems is different, for instance, LK is able
to recover motion along the whole contour of the balanced corners but for the unbalanced
corners recovers motion just for the oblique edge. Regarding to the balanced and double
balanced figures, since they are symmetric figures, we expect a symmetric behavior of the
equation systems solution, but observe that the behavior of the EE and the QM is not
symmetric due to the derivatives are non symmetric.

Figure 13 shows EE against QM for the discrete sequences with corners Ck30◦ for k =
1, 2, 3. Both measures are normalized. We can appreciate a decreasing dependency between
EE and QM (with the exception of some outliers), but this dependency is clearly non-linear.

In order to quantitatively analyze dependency between EE and QM, we have computed
the Spearman correlation coefficient considering all corners and all discrete sequences. In
tables 1 and 2 we show the Spearman correlation coefficient and its p − value. Since
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Figure 10: Behavior of the EE and QM for the HPF and LK for the corner Ck30◦ with ∀k
with movement α0. All shown measures are normalized.

p−value < 0.05 in all cases, we can reject the null hypothesis, and thus, there is a negative
correlation between EE and QM for the HPF and LK local systems.
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Figure 11: Behavior of the EE and QM for the HPF and LK for the corner Ck60◦ with ∀k
with movement α0. All shown measures are normalized.
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Figure 12: Behavior of the EE and QM for the HPF and LK for the corner Ck90◦ with ∀k
with movement α0. All shown measures are normalized.

20



Unbalanced Balanced Double Balanced
H
P
F

L
K

Figure 13: EE versus QM for HPF (first row) and LK (second row) equation systems applied
to the corner Ck30◦ with ∀k for the discrete sequences.

HPF. Spearman Test

Unbalanced Balanced Double Balanced

ρ p− val ρ p− val ρ p− val
-0.065 0.000 -0.038 0.000 -0.078 0.000

Table 1: Spearman test for the HPF equation system considering the discrete sequences
and all corners.

LK. Spearman Test

Unbalanced Balanced Double Balanced

ρ p− val ρ p− val ρ p− val
-0.304 0.000 -0.034 0.000 -0.196 0.000

Table 2: Spearman test for the LK equation system considering the discrete sequences and
all corners.
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4.2 Optical Flow Accuracy

In tables 3, 4, 5 and 6 we show the results for continuous sequences. In tables 3 and 4 we
show, for the HPF and LK respectively, the ranges of the EE for all corners considering
the continuous sequences. Besides, in tables 5 and 6 we show, for the HPF and LK, the
percentage ranges of the IP with tol = 10−2 for all corners considering the continuous
sequences. For all tables we have also computed the ranges considering all corners from 10◦

to 80◦. We have not considered the corner 90◦ because it is a particular case, the unbalanced
corner has two pure edges and the double balanced corner is an edge, thus the errors and
the percentage of IP for this corner are bigger than for the other ones.

Concerning the statistics shown in tables 3, 4, 5 and 6, when the angle of the corner is
quite small or quite big, the edges inclination are close to be horizontal or vertical, so the
equation system is singular in most of the points and also, when we can recover motion, the
EE is higher. Notice that for the unbalanced and balanced corner 10◦ the percentage of IP
is really low for the HPF method, this is because of the scale influence. Since the corner
aperture is really small when we compute the OF in a concrete pixel, we have information
from pixels where motion can be recovered properly.

Comparing the statistics shown in tables 3, 4, 5 and 6 for the unbalanced and balanced
corners, we can observe that, since the unbalanced corner has a straight edge, the percentage
of IP is higher. Besides, for the unbalanced and the double balanced corners of 70◦, 80◦

and 90◦ statistics, we expect to have a similar EE range (since they have the same edge
inclination) and a higher IP range for the unbalanced corner (since it has a straight edge).
Notice that, as we expected, IP range is higher for the unbalanced corner. On the contrary,
the EE range is quite different. The higher ranges of the EE for the double balanced corner
are produced by the derivatives definition.

HPF. End Point Error Averages for all movements. tol = 10−2.

θ Unbalanced Balanced Double Balanced

10◦ 0.20 ± 0.09 0.10 ± 0.05 0.18 ± 0.08
20◦ 0.20 ± 0.09 0.18 ± 0.08 0.16 ± 0.07
30◦ 0.19 ± 0.08 0.22 ± 0.10 0.14 ± 0.05
40◦ 0.19 ± 0.09 0.16 ± 0.07 0.18 ± 0.09
50◦ 0.19 ± 0.08 0.14 ± 0.05 0.08 ± 0.05
60◦ 0.17 ± 0.06 0.14 ± 0.05 0.28 ± 0.06
70◦ 0.20 ± 0.10 0.18 ± 0.08 0.66 ± 0.16
80◦ 0.19 ± 0.07 0.18 ± 0.09 0.75 ± 0.41
90◦ 0.29 ± 0.12 0.22 ± 0.07 3.55 ± 0.60
All∗ 0.19 ± 0.08 0.16 ± 0.08 0.30 ± 0.29

Table 3: HPF EE ranges for all corners and considering the continuous sequences. *The
range takes into account all corners from 10◦ to 80◦.

Figures 14 and 15 show a qualitative comparison between the original HPF and the
improved HPF applied to the Army (Mid) and to the Tram (Onv) sequences respectively.
In the first row we show the two frames used to compute the OF. In the second row we show
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LK. End Point Error Averages for all movements. tol = 10−2.

θ Unbalanced Balanced Double Balanced

10◦ 0.14 ± 0.07 0.13 ± 0.07 0.19 ± 0.09
20◦ 0.18 ± 0.08 0.19 ± 0.09 0.18 ± 0.09
30◦ 0.22 ± 0.10 0.18 ± 0.10 0.26 ± 0.13
40◦ 0.17 ± 0.07 0.18 ± 0.09 0.22 ± 0.10
50◦ 0.14 ± 0.06 0.19 ± 0.06 0.21 ± 0.10
60◦ 0.19 ± 0.12 0.26 ± 0.13 0.21 ± 0.08
70◦ 0.16 ± 0.09 0.30 ± 0.15 0.16 ± 0.07
80◦ 0.12 ± 0.04 0.22 ± 0.10 0.15 ± 0.08
90◦ 0.28 ± 0.13 0.46 ± 0.15 0.55 ± 0.19
All∗ 0.16 ± 0.09 0.21 ± 0.11 0.20 ± 0.10

Table 4: LK EE ranges for all corners and considering the continuous sequences. *The
range takes into account all corners from 10◦ to 80◦.

HPF. Invalid Points Percentage Averages for all movements. tol = 10−2.

θ Unbalanced Balanced Double Balanced

10◦ 6.15 ± 2.24 % 0.84 ± 0.23 % 10.57 ± 1.34 %
20◦ 17.25 ± 0.76 % 10.57 ± 1.34 % 6.74 ± 0.74 %
30◦ 36.41 ± 1.24 % 9.98 ± 0.89 % 5.16 ± 1.56 %
40◦ 37.19 ± 0.67 % 6.74 ± 0.74 % 6.48 ± 0.39 %
50◦ 38.97 ± 0.26 % 4.19 ± 1.26 % 1.99 ± 0.06 %
60◦ 39.88 ± 0.81 % 5.16 ± 1.56 % 3.61 ± 1.87 %
70◦ 34.18 ± 0.33 % 6.69 ± 1.43 % 1.37 ± 0.65 %
80◦ 42.75 ± 0.90 % 6.48 ± 0.39 % 7.08 ± 3.80 %
90◦ 71.26 ± 0.25 % 78.62 ± 0.09 % 85.28 ± 1.77 %
All∗ 31.60 ± 12.10 % 6.33 ± 3.11 % 5.37 ± 3.30 %

Table 5: HPF Invalid Points ranges for all corners and considering the continuous sequences.
*The range takes into account all corners from 10◦ to 80◦.
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LK. Invalid Points Percentage Averages for all movements. tol = 10−2.

θ Unbalanced Balanced Double Balanced

10◦ 27.02 ± 1.05 % 28.37 ± 13.06 % 61.65 ± 7.23 %
20◦ 35.24 ± 0.58 % 61.65 ± 7.23 % 53.49 ± 17.41 %
30◦ 37.74 ± 0.43 % 57.54 ± 15.21 % 68.85 ± 16.33 %
40◦ 38.39 ± 0.27 % 53.49 ± 17.41 % 45.12 ± 18.96 %
50◦ 39.38 ± 0.40 % 34.48 ± 12.68 % 37.84 ± 38.12 %
60◦ 40.43 ± 0.35 % 68.85 ± 16.33 % 35.22 ± 36.76 %
70◦ 40.64 ± 0.37 % 71.58 ± 16.68 % 28.51 ± 31.05 %
80◦ 40.92 ± 0.22 % 45.12 ± 18.96 % 34.83 ± 36.08 %
90◦ 84.71 ± 2.09 % 86.49 ± 1.46 % 93.10 ± 2.00 %
All∗ 37.47 ± 4.35 % 52.64 ± 20.99 % 45.69 ± 30.60 %

Table 6: LK Invalid Points ranges for all corners and considering the continuous sequences.
*The range takes into account all corners from 10◦ to 80◦.

the color code (notice that it is normalized). In the third row we show the OF computed in
color codification, the original HPF on the left image and the improved HPF on the right
image. Finally, in the fourth row we show a detail of the OF in vectors codification, the
original HPF on the left image and the improved HPF on the right image.

Since the Army sequence has several independently moving objects, we expect to recover
different motions for different objects. In figure 14 the details of the color codification image
are more defined in the improved HPF solution and we can distinguish the soldiers and other
details of the sequence. The noise of the object contours is high due to the method does
not over-regularize the velocity vector field. Notice that in the detail we can appreciate
that OF field with the improved HPF distinguish the flow of different objects. Since the
temporal resolution is quite high and the objects have independent movements, the scale
that performs better when computing the OF is scale 1.

Since the Tram sequence contains a tram’s driver, motion goes from the image frame to
the vanishing point at the center. In figure 15 with the improved HPF we have obtained
the vanishing point, which is an important point of the sequence. Also notice that the OF
solution is too noisy, specially in the frame of the image, it might be produced because in
this region the temporal resolution is the lowest of the whole image and also for the image
resolution, which is really bad. Notice that in the detail we can see that even there is noise in
the OF computation the velocity vector field is well defined. Since the temporal resolution
is quite low and motion is continuous for the whole image, the scale that performs better
when computing the OF is the scale 3.

Notice that in both sequences we can appreciate a clear improvement with the incor-
poration of the new weights and also, the improved HPF returns non over-regularized OF
fields.
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Frame 07 Frame 08

Flow Color Coding

HPF OF Improved HPF OF

Detail HPF OF Detail improved HPF OF

Figure 14: Army sequence (Mid). With the original HPF and the improved HPF. Using
scale 1 of the GF.
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Frame 2 Frame 3

Flow Color Coding

HPF OF Improved HPF OF

Detail HPF OF Detail improved HPF OF

Figure 15: Tram sequence. With the original HPF and the improved HPF using scale 3 of
the GF.
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5. Conclusions and Future Work

In this project we have studied the conditions that ensure the accuracy of the local optical
flow schemes of LK and HPF. In addition we have introduced those conditions as a weights
in the variational framework of the HPF and we have done a first qualitative experiment to
test the new weights. As far as we know, this is the first time that weights depend on the
accuracy of the local system solutions and not on the image features.

Through the experiments with the discrete sequences, since QM and EE have a decreas-
ing dependency, we have checked that QM that ensure the accuracy of the local systems
solutions are well defined. In addition we have observed that even theoretically we can
only recover motion in corners, due to images are in a discrete domain, we can also recover
motion in some edges.

Regarding the experiment with the continuous database, we can observe that HPF is
more stable to the corners geometry than LK. This is produced because HPF changes the
space representation to a smoother one. In addition, since ranges of IP percentages are
lower for HPF, HPF solves the aperture problem in more cases than LK. However, notice
that HPF computes the solution over a periodic image and due to the inherent properties
of our database we are favoring the OF computation. Therefore, we have planned to repeat
the experiments in order to avoid giving more advantages to one system than to the other
one. Nevertheless, we do not think that the results will be significantly different. Besides,
since we are not computing EE ranges over the same points, LK EE and HPF EE ranges
are not comparable, thus we have planned to repeat the experiment considering also the
intersection of non IP of both methods.

In the case that applying the improved HPF to real sequences we can observe a clear
improvement on the computation of the OF. In addition, we are not over-regularizing the so-
lution. Therefore, implementing weights that take into account the theoretical requirements
that ensure the solution of the local equation systems and that consider the data-term and
the smoothness-term complementary terms, provide a real improvement in the OF compu-
tation.

We do not have any quantitative experiments of the variational HPF implementation
because it suffers errors computing the magnitudes. This errors might be produced by the
numerical scheme formulation. Thus we have planned to debug the magnitude computation
error in the variational HPF.

Another point is to implement the weights in the variational framework developed by
Bruhn et al. (2005) and compare qualitatively the results against the original implemen-
tation. In addition it would be interesting to analyze quantitatively the results obtained
applying both improved variational frameworks to real life sequences.

We also have planned to implement coarse-to-fine techniques in order to avoid possible
errors due to low temporal resolution of the sequence.

Finally, since the results are affected by the derivatives (which are non symmetric), we
have planed to improve the derivatives definition.
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