toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Aura Hernandez-Sabate; Debora Gil; Petia Radeva edit   pdf
  Title On the usefulness of supervised learning for vessel border detection in IntraVascular Imaging Type Conference Article
  Year 2005 Publication Proceeding of the 2005 conference on Artificial Intelligence Research and Development Abbreviated Journal  
  Volume Issue Pages 67-74  
  Keywords classification; vessel border modelling; IVUS  
  Abstract IntraVascular UltraSound (IVUS) imaging is a useful tool in diagnosis of cardiac diseases since sequences completely show the morphology of coronary vessels. Vessel borders detection, especially the external adventitia layer, plays a central role in morphological measures and, thus, their segmentation feeds development of medical imaging techniques. Deterministic approaches fail to yield optimal results due to the large amount of IVUS artifacts and vessel borders descriptors. We propose using classification techniques to learn the set of descriptors and parameters that best detect vessel borders. Statistical hypothesis test on the error between automated detections and manually traced borders by 4 experts show that our detections keep within inter-observer variability.  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Amsterdam, The Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ HGR2005c Serial 1549  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: