toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Mariano Vazquez; Ruth Aris; Guillaume Hozeaux; R.Aubry; P.Villar;Jaume Garcia ; Debora Gil; Francesc Carreras edit   pdf
url  doi
  Title A massively parallel computational electrophysiology model of the heart Type Journal Article
  Year 2011 Publication International Journal for Numerical Methods in Biomedical Engineering Abbreviated Journal IJNMBE  
  Volume 27 Issue Pages 1911-1929  
  Keywords computational electrophysiology; parallelization; finite element methods  
  Abstract This paper presents a patient-sensitive simulation strategy capable of using the most efficient way the high-performance computational resources. The proposed strategy directly involves three different players: Computational Mechanics Scientists (CMS), Image Processing Scientists and Cardiologists, each one mastering its own expertise area within the project. This paper describes the general integrative scheme but focusing on the CMS side presents a massively parallel implementation of computational electrophysiology applied to cardiac tissue simulation. The paper covers different angles of the computational problem: equations, numerical issues, the algorithm and parallel implementation. The proposed methodology is illustrated with numerical simulations testing all the different possibilities, ranging from small domains up to very large ones. A key issue is the almost ideal scalability not only for large and complex problems but also for medium-size meshes. The explicit formulation is particularly well suited for solving this highly transient problems, with very short time-scale.  
  Address Swansea (UK)  
  Corporate Author John Wiley & Sons, Ltd. Thesis  
  Publisher John Wiley & Sons, Ltd. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ VAH2011 Serial 1198  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: