toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Daniel Ponsa; Antonio Lopez edit   pdf
doi  openurl
  Title Variance reduction techniques in particle-based visual contour Tracking Type Journal Article
  Year 2009 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 42 Issue 11 Pages 2372–2391  
  Keywords Contour tracking; Active shape models; Kalman filter; Particle filter; Importance sampling; Unscented particle filter; Rao-Blackwellization; Partitioned sampling  
  Abstract This paper presents a comparative study of three different strategies to improve the performance of particle filters, in the context of visual contour tracking: the unscented particle filter, the Rao-Blackwellized particle filter, and the partitioned sampling technique. The tracking problem analyzed is the joint estimation of the global and local transformation of the outline of a given target, represented following the active shape model approach. The main contributions of the paper are the novel adaptations of the considered techniques on this generic problem, and the quantitative assessment of their performance in extensive experimental work done.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (down) Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ PoL2009a Serial 1168  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: