toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Qingshan Chen; Zhenzhen Quan; Yifan Hu; Yujun Li; Zhi Liu; Mikhail Mozerov edit  url
openurl 
  Title MSIF: multi-spectrum image fusion method for cross-modality person re-identification Type Journal Article
  Year 2023 Publication (up) International Journal of Machine Learning and Cybernetics Abbreviated Journal IJMLC  
  Volume Issue Pages  
  Keywords  
  Abstract Sketch-RGB cross-modality person re-identification (ReID) is a challenging task that aims to match a sketch portrait drawn by a professional artist with a full-body photo taken by surveillance equipment to deal with situations where the monitoring equipment is damaged at the accident scene. However, sketch portraits only provide highly abstract frontal body contour information and lack other important features such as color, pose, behavior, etc. The difference in saliency between the two modalities brings new challenges to cross-modality person ReID. To overcome this problem, this paper proposes a novel dual-stream model for cross-modality person ReID, which is able to mine modality-invariant features to reduce the discrepancy between sketch and camera images end-to-end. More specifically, we propose a multi-spectrum image fusion (MSIF) method, which aims to exploit the image appearance changes brought by multiple spectrums and guide the network to mine modality-invariant commonalities during training. It only processes the spectrum of the input images without adding additional calculations and model complexity, which can be easily integrated into other models. Moreover, we introduce a joint structure via a generalized mean pooling (GMP) layer and a self-attention (SA) mechanism to balance background and texture information and obtain the regional features with a large amount of information in the image. To further shrink the intra-class distance, a weighted regularized triplet (WRT) loss is developed without introducing additional hyperparameters. The model was first evaluated on the PKU Sketch ReID dataset, and extensive experimental results show that the Rank-1/mAP accuracy of our method is 87.00%/91.12%, reaching the current state-of-the-art performance. To further validate the effectiveness of our approach in handling cross-modality person ReID, we conducted experiments on two commonly used IR-RGB datasets (SYSU-MM01 and RegDB). The obtained results show that our method achieves competitive performance. These results confirm the ability of our method to effectively process images from different modalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ CQH2023 Serial 3885  
Permanent link to this record
 

 
Author Marçal Rusiñol; Volkmar Frinken; Dimosthenis Karatzas; Andrew Bagdanov; Josep Llados edit  doi
openurl 
  Title Multimodal page classification in administrative document image streams Type Journal Article
  Year 2014 Publication (up) International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 17 Issue 4 Pages 331-341  
  Keywords Digital mail room; Multimodal page classification; Visual and textual document description  
  Abstract In this paper, we present a page classification application in a banking workflow. The proposed architecture represents administrative document images by merging visual and textual descriptions. The visual description is based on a hierarchical representation of the pixel intensity distribution. The textual description uses latent semantic analysis to represent document content as a mixture of topics. Several off-the-shelf classifiers and different strategies for combining visual and textual cues have been evaluated. A final step uses an n-gram model of the page stream allowing a finer-grained classification of pages. The proposed method has been tested in a real large-scale environment and we report results on a dataset of 70,000 pages.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; LAMP; 600.056; 600.061; 601.240; 601.223; 600.077; 600.079 Approved no  
  Call Number Admin @ si @ RFK2014 Serial 2523  
Permanent link to this record
 

 
Author Muhammad Anwer Rao; Fahad Shahbaz Khan; Joost Van de Weijer; Matthieu Molinier; Jorma Laaksonen edit   pdf
url  openurl
  Title Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification Type Journal Article
  Year 2018 Publication (up) ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS J  
  Volume 138 Issue Pages 74-85  
  Keywords Remote sensing; Deep learning; Scene classification; Local Binary Patterns; Texture analysis  
  Abstract Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.109; 600.106; 600.120 Approved no  
  Call Number Admin @ si @ RKW2018 Serial 3158  
Permanent link to this record
 

 
Author AN Ruchai; VI Kober; KA Dorofeev; VN Karnaukhov; Mikhail Mozerov edit  url
doi  openurl
  Title Classification of breast abnormalities using a deep convolutional neural network and transfer learning Type Journal Article
  Year 2021 Publication (up) Journal of Communications Technology and Electronics Abbreviated Journal  
  Volume 66 Issue 6 Pages 778–783  
  Keywords  
  Abstract A new algorithm for classification of breast pathologies in digital mammography using a convolutional neural network and transfer learning is proposed. The following pretrained neural networks were chosen: MobileNetV2, InceptionResNetV2, Xception, and ResNetV2. All mammographic images were pre-processed to improve classification reliability. Transfer training was carried out using additional data augmentation and fine-tuning. The performance of the proposed algorithm for classification of breast pathologies in terms of accuracy on real data is discussed and compared with that of state-of-the-art algorithms on the available MIAS database.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; Approved no  
  Call Number Admin @ si @ RKD2022 Serial 3680  
Permanent link to this record
 

 
Author Rada Deeb; Joost Van de Weijer; Damien Muselet; Mathieu Hebert; Alain Tremeau edit   pdf
url  openurl
  Title Deep spectral reflectance and illuminant estimation from self-interreflections Type Journal Article
  Year 2019 Publication (up) Journal of the Optical Society of America A Abbreviated Journal JOSA A  
  Volume 31 Issue 1 Pages 105-114  
  Keywords  
  Abstract In this work, we propose a convolutional neural network based approach to estimate the spectral reflectance of a surface and spectral power distribution of light from a single RGB image of a V-shaped surface. Interreflections happening in a concave surface lead to gradients of RGB values over its area. These gradients carry a lot of information concerning the physical properties of the surface and the illuminant. Our network is trained with only simulated data constructed using a physics-based interreflection model. Coupling interreflection effects with deep learning helps to retrieve the spectral reflectance under an unknown light and to estimate spectral power distribution of this light as well. In addition, it is more robust to the presence of image noise than classical approaches. Our results show that the proposed approach outperforms state-of-the-art learning-based approaches on simulated data. In addition, it gives better results on real data compared to other interreflection-based approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ DWM2019 Serial 3362  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: