toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Wenjuan Gong; W.Zhang; Jordi Gonzalez; Y.Ren; Z.Li edit  doi
openurl 
  Title Enhanced Asymmetric Bilinear Model for Face Recognition Type Journal Article
  Year 2015 Publication International Journal of Distributed Sensor Networks Abbreviated Journal IJDSN  
  Volume Issue Pages Article ID 218514  
  Keywords  
  Abstract Bilinear models have been successfully applied to separate two factors, for example, pose variances and different identities in face recognition problems. Asymmetric model is a type of bilinear model which models a system in the most concise way. But seldom there are works exploring the applications of asymmetric bilinear model on face recognition problem with illumination changes. In this work, we propose enhanced asymmetric model for illumination-robust face recognition. Instead of initializing the factor probabilities randomly, we initialize them with nearest neighbor method and optimize them for the test data. Above that, we update the factor model to be identified. We validate the proposed method on a designed data sample and extended Yale B dataset. The experiment results show that the enhanced asymmetric models give promising results and good recognition accuracies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.063; 600.078 Approved no  
  Call Number Admin @ si @ GZG2015 Serial (down) 2592  
Permanent link to this record
 

 
Author Ivan Huerta; Marco Pedersoli; Jordi Gonzalez; Alberto Sanfeliu edit  doi
openurl 
  Title Combining where and what in change detection for unsupervised foreground learning in surveillance Type Journal Article
  Year 2015 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 48 Issue 3 Pages 709-719  
  Keywords Object detection; Unsupervised learning; Motion segmentation; Latent variables; Support vector machine; Multiple appearance models; Video surveillance  
  Abstract Change detection is the most important task for video surveillance analytics such as foreground and anomaly detection. Current foreground detectors learn models from annotated images since the goal is to generate a robust foreground model able to detect changes in all possible scenarios. Unfortunately, manual labelling is very expensive. Most advanced supervised learning techniques based on generic object detection datasets currently exhibit very poor performance when applied to surveillance datasets because of the unconstrained nature of such environments in terms of types and appearances of objects. In this paper, we take advantage of change detection for training multiple foreground detectors in an unsupervised manner. We use statistical learning techniques which exploit the use of latent parameters for selecting the best foreground model parameters for a given scenario. In essence, the main novelty of our proposed approach is to combine the where (motion segmentation) and what (learning procedure) in change detection in an unsupervised way for improving the specificity and generalization power of foreground detectors at the same time. We propose a framework based on latent support vector machines that, given a noisy initialization based on motion cues, learns the correct position, aspect ratio, and appearance of all moving objects in a particular scene. Specificity is achieved by learning the particular change detections of a given scenario, and generalization is guaranteed since our method can be applied to any possible scene and foreground object, as demonstrated in the experimental results outperforming the state-of-the-art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.063; 600.078 Approved no  
  Call Number Admin @ si @ HPG2015 Serial (down) 2589  
Permanent link to this record
 

 
Author Meysam Madadi; Sergio Escalera; Jordi Gonzalez; Xavier Roca; Felipe Lumbreras edit  doi
openurl 
  Title Multi-part body segmentation based on depth maps for soft biometry analysis Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 56 Issue Pages 14-21  
  Keywords 3D shape context; 3D point cloud alignment; Depth maps; Human body segmentation; Soft biometry analysis  
  Abstract This paper presents a novel method extracting biometric measures using depth sensors. Given a multi-part labeled training data, a new subject is aligned to the best model of the dataset, and soft biometrics such as lengths or circumference sizes of limbs and body are computed. The process is performed by training relevant pose clusters, defining a representative model, and fitting a 3D shape context descriptor within an iterative matching procedure. We show robust measures by applying orthogonal plates to body hull. We test our approach in a novel full-body RGB-Depth data set, showing accurate estimation of soft biometrics and better segmentation accuracy in comparison with random forest approach without requiring large training data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE; ADAS; 600.076;600.049; 600.063; 600.054; 302.018;MILAB Approved no  
  Call Number Admin @ si @ MEG2015 Serial (down) 2588  
Permanent link to this record
 

 
Author Mikhail Mozerov; Joost Van de Weijer edit  doi
openurl 
  Title Accurate stereo matching by two step global optimization Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 24 Issue 3 Pages 1153-1163  
  Keywords  
  Abstract In stereo matching cost filtering methods and energy minimization algorithms are considered as two different techniques. Due to their global extend energy minimization methods obtain good stereo matching results. However, they tend to fail in occluded regions, in which cost filtering approaches obtain better results. In this paper we intend to combine both approaches with the aim to improve overall stereo matching results. We show that a global optimization with a fully connected model can be solved by cost fil tering methods. Based on this observation we propose to perform stereo matching as a two-step energy minimization algorithm. We consider two MRF models: a fully connected model defined on the complete set of pixels in an image and a conventional locally connected model. We solve the energy minimization problem for the fully connected model, after which the marginal function of the solution is used as the unary potential in the locally connected MRF model. Experiments on the Middlebury stereo datasets show that the proposed method achieves state-of-the-arts results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ISE; LAMP; 600.079; 600.078 Approved no  
  Call Number Admin @ si @ MoW2015a Serial (down) 2568  
Permanent link to this record
 

 
Author Noha Elfiky; Theo Gevers; Arjan Gijsenji; Jordi Gonzalez edit   pdf
doi  openurl
  Title Color Constancy using 3D Scene Geometry derived from a Single Image Type Journal Article
  Year 2014 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 23 Issue 9 Pages 3855-3868  
  Keywords  
  Abstract The aim of color constancy is to remove the effect of the color of the light source. As color constancy is inherently an ill-posed problem, most of the existing color constancy algorithms are based on specific imaging assumptions (e.g. grey-world and white patch assumption).
In this paper, 3D geometry models are used to determine which color constancy method to use for the different geometrical regions (depth/layer) found
in images. The aim is to classify images into stages (rough 3D geometry models). According to stage models; images are divided into stage regions using hard and soft segmentation. After that, the best color constancy methods is selected for each geometry depth. To this end, we propose a method to combine color constancy algorithms by investigating the relation between depth, local image statistics and color constancy. Image statistics are then exploited per depth to select the proper color constancy method. Our approach opens the possibility to estimate multiple illuminations by distinguishing
nearby light source from distant illuminations. Experiments on state-of-the-art data sets show that the proposed algorithm outperforms state-of-the-art
single color constancy algorithms with an improvement of almost 50% of median angular error. When using a perfect classifier (i.e, all of the test images are correctly classified into stages); the performance of the proposed method achieves an improvement of 52% of the median angular error compared to the best-performing single color constancy algorithm.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.078 Approved no  
  Call Number Admin @ si @ EGG2014 Serial (down) 2528  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: