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Abstract—The aim of color constancy is to remove
the effect of the color of the light source. As color
constancy is inherently an ill-posed problem, most
of the existing color constancy algorithms are based
on specific imaging assumptions (e.g. grey-world and
white patch assumption).

In this paper, 3D geometry models are used to
determine which color constancy method to use for
the different geometrical regions (depth/layer) found
in images. The aim is to classify images into stages
(rough 3D geometry models). According to stage mod-
els; images are divided into stage regions using hard and
soft segmentation. After that, the best color constancy
methods is selected for each geometry depth. To this
end, we propose a method to combine color constancy
algorithms by investigating the relation between depth,
local image statistics and color constancy. Image statis-
tics are then exploited per depth to select the proper
color constancy method. Our approach opens the possi-
bility to estimate multiple illuminations by distinguish-
ing nearby light source from distant illuminations.

Experiments on state-of-the-art data sets show that
the proposed algorithm outperforms state-of-the-art
single color constancy algorithms with an improvement
of almost 50% of median angular error. When using a
perfect classifier (i.e, all of the test images are correctly
classified into stages); the performance of the proposed
method achieves an improvement of 52% of the median
angular error compared to the best-performing single
color constancy algorithm.

I. Introduction
The color of objects is largely dependent on the color

of the light source. Therefore, the same object recorded
by the same camera but under different illumination
conditions may vary in its measured color appearance.
This color variation may negatively affect the result of
subsequent image and video processing methods for dif-
ferent applications such as object recognition, tracking
and surveillance. The aim of color constancy is to remove
the effect of the color of the light source. A considerable
number of color constancy algorithms have been proposed,
see [1], [2], [3] for reviews. Traditionally, pixel values are
exploited to estimate the illumination. Examples of such
methods include approaches based on low-level features
[4], gamut-based algorithms [5], and methods using learn-
ing [3]. Recently, methods that use derivatives (i.e., edges)
and even higher-order statistics have been proposed [6].

In general, color constancy algorithms are based on spe-
cific assumptions about the illumination or properties of
the object reflectance. As a consequence, none of them can
be considered as universal. Therefore, different methods
have been proposed to select or combine color constancy

approaches. Higher level visual information is considered
only recently [6], [7], [8]. In [6], the image is modeled as a
mixture of semantic classes, such as sky, grass, roads and
buildings. Illumination estimation is steered by different
classes by evaluating the likelihood of the semantic con-
tent. Similarly, indoor-outdoor image information is used
[7]. Alternatively, image statistics are used in [8] to select
the most useful color constancy method. It is shown that
images with similar image statistics will benefit from the
same color constancy algorithm.

Recently, the work in [9] and [10] shows the importance
of using stage models for selecting the proper color con-
stancy algorithm per stage. Stage models are 3D geometry
models of a scene. The method in [10] shows the impor-
tance of exploiting local depth information for each stage
geometry over using the global geometry [9]. Alternatively,
Jose et al. [11] proposed a different approach to address
multi-illuminations. The method uses color and texture
features to compute the nearest neighbor regions from the
training data. This is done for each region in the test
image. The illumination estimation for each (test) region is
based on histogram matching using the nearest (training)
region. Finally, the region estimates are combined in a
single estimated illumination for the entire image.

In contrast to previous work, our contribution is to
exploit the relation between depth, image statistics and
color constancy. It has been shown that image statistics
are influenced by depth patterns [12], e.g. the signal-to-
noise ratio generally decreases as the depth increases [13]
while the scale changes when viewing scenes from different
depths [14]. Furthermore, attributes like signal-to-noise
and scale are inherently correlated with color constancy
[8].

Therefore, in this paper, the relationships between
depth, local image statistics and color constancy algo-
rithms are investigated. The aim is to compute the 3D
scene geometry from a single image. In this way, the depth
layers are obtained. Then, image statistics are exploited
(per layer/depth) to select the color constancy method
with best expected performance. Color constancy will be
applied per depth layer allowing multiple light sources per
scene.

The outline of the paper is as follows: we give the
motivation of our approach in section II, then in section
III we briefly outline the color constancy framework and
3D scene geometry classification. Section IV presents the
datasets and error metrics. In section V and VI, we outline
the proposed. Section VII presents the experimental re-
sults on standard datasets. Finally, section VIII concludes
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the paper.

II. Motivation
The lighting conditions in a scene may differ at varying

depth layers. For example, nearby objects may be illumi-
nated by a different light source than distant ones. If we
can derive the scene geometry, this will result in important
depth cues. In this section, we motivate our approach by
inferring a relation between the depth of a scene and color
constancy.

Image statistics and scene depth: The relation
between depth patterns and natural image statistics is
studied in [14], [15]. They show that in case of a domi-
nant structure (object or background) gradient histograms
correspond to a decaying power-law distribution. When
depth increases, the size of objects will decrease showing
less texture. Hence, object distance can be associated by
a power-law.

In this paper, to model natural image statistics, the inte-
grated Weibull distribution is taken as the representation
of a decaying power-law [16]:

ω(x) = C exp(− 1
γ
|x
β
|γ) (1)

where x is the edge response in a single color channel of a
Gaussian derivative filter, C is a normalization constant,
β is the scale parameter (i.e. the width) of the distribution
and γ is the shape parameter (i.e. the peakedness) of
the distribution. The parameters of this distribution are
indicative for the edge statistics of a scene [16]. In general,
the Weibull parameter β encodes image (edge) contrast,
and γ corresponds to the grain size and is related to the
amount of texture. A higher value for β indicates more
contrast, while a higher value for γ indicates a smaller
grain size (more fine texture). For example, γ = 2 the
Weibull distribution is equivalent to the normal distribu-
tion and for γ = 1 it is a double exponential. The exponent
δ indicates the fractal dimension.

When the depth of a natural scene becomes larger,
object surfaces will become smaller and will contain fewer
details and therefore become smoother. Hence, scene ele-
ments appear increasingly fuzzier with depth. On the con-
trary, when scene depth becomes smaller, object surfaces
will become larger and coarser showing more contrasting
details. In this case, natural image statistics computed
from the image follow a Weibull distribution with increas-
ing β and γ [15], which is consistent with the observations
in [16]. Hence, a relation exists between natural image
statistics and depth patterns of a scene [14], [15].

Image statistics and color constancy: It has been
shown in [17], that natural image statistics, represented by
Weibull distributions, are useful to select the proper color
constancy method. It is derived that if the image contains
a limited number of edges, pixel-based color constancy is
preferred. In case of sufficient edges (e.g., more than eight
different edges), edge-based color constancy is preferred.
The order of the best performance in terms of the number
of edges (from low to high) is as follows: zeroth-order

statistics first, followed by first-order and second-order
statistics. If the image contains contrasted edges (i.e. β and
γ are small), edge-based color constancy is used, otherwise
pixel-based color constancy is preferred. Hence, a relation
exists between image statistics (Weibull parameterization)
and color constancy where contrast β and grain size (γ)
are related to the number of edges, amount of texture,
and signal-to-noise ratio to which the used color constancy
methods are sensitive.

Depth and color constancy: In contrast to previous
work, the contribution of this paper is to exploit the
relation between depth and color constancy. Contrasted
details (edges) are common for close-by objects (edge-
based color constancy is preferred) than distant objects
(pixel-based color constancy is preferred). This novelty is
used to improve color constancy by inferring the scene
geometry, and consequently the depth of each layer. Then,
image statistics are exploited (per layer/depth) to select
the proper color constancy method. Further, scene layers
at different distances may be illuminated by different light
sources. Color constancy will be applied per layer allowing
multiple light sources per scene. The only assumption is
that a single light source is illuminating the scene part at
a certain distance (layer).

III. Preliminaries
In this section, we briefly discuss the computational

methods to estimate the illumination and to determine
scene geometries (stages).

A. Color Constancy
Assuming Lambertian reflection, the image color f =

(R,G,B)T depends on the color of the light source e(λ),
the surface reflection s(x, λ) and the camera sensitivity
function c(λ):

f(x) =
∫
ω

e(λ)c(λ)s(x, λ)dλ , (2)

where ω is the visible spectrum, λ is the wavelength of the
light and x is the spatial coordinate. Under the assumption
that the recorded color of the light source e depends on the
color of the light source e(λ) and the camera sensitivity
function c(λ), the color of the light source is estimated by

e =
∫
ω

e(λ) c(λ) dλ . (3)

Since both e(λ) and c(λ) are unknown, color constancy is
an under-constrained problem. Therefore, in order to solve
the color constancy problem, a number of assumptions are
made such as the Grey-World assumption (i.e. the average
pixel value is grey) and the White-Patch assumption (ı.e.
the maximum pixel value is white) [1].

To incorporate both pixel values and higher-order
derivative information, in this paper, the following color
constancy framework is used [6],(∫ ∣∣∣∣∂nfσ(x)

∂xn

∣∣∣∣pdx)
1
p

= k en,p,σ, (4)
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where k is a multiplicative constant chosen such that the
illuminant color, e = (eR, eG, eB)T , has unit length (the
Euclidean norm of a vector is used), n is the order of the
derivative, p is the Minkowski-norm and fσ(x) = f ⊗ Gσ
is the convolution of the image with a Gaussian filter
with scale parameter σ. Using Equation 4, different color
constancy algorithms are generated by varying one or more
of parameter values. For example,

1) when n=0, pixel-based color constancy algorithms
are obtained, such as the Grey-World algorithm
(e0,1,0), the White-Patch algorithm (e0,−1,0) and the
general Grey-World (e0,13,2);

2) when n=1, color constancy algorithms are obtained
using first-order derivative information, ı.e. im-
age edges information. The Minkowski-norm p and
smoothing parameter σ depend on each specific data
set. The instantiation e1,1,6 is applied in this paper;

3) when n=2, the framework provides color constancy
methods based on second-order statistics. Similarly,
the other two parameters p and σ vary with the data
set. We use e2,1,5 in our experiments.

To this end, in order to exploit the relation between
natural image statistics and color constancy, a set of color
constancy methods is required [17] for learning the most
appropriate method to use within each stage based on its
natural image statistics. In this paper, we focus on the
above instantiations which include pixel and derivative-
based methods. However, other color constancy methods
can be used as well.

Fig. 1. Stage models [15] and their corresponding instantiations:
top two rows, from left to right: sky+bkg+gnd, bkgGnd,skyGnd,
gndDiagBkgLR; bottom two rows:diagBkgLR, box, 1side-wallLR,
corner.

B. Depth from Stage Models
A number of methods have been proposed to estimate

the rough scene geometry from single images [18], [19],
[20]. However, these methods are restricted to a number
of classes limiting their applicability. Therefore, stages [15]
which correspond to generic categories, are taken. Stages
are defined as a set of prototypes of common scene con-
figurations. They can be seen as discrete classes of scene

geometries. Typical classes of discrete 3D scene geometries
(i.e. stage models) include single-side backgrounds (e.g.
walls and buildings) or three sides (e.g. corridor and
narrow streets). A number of stage models, together with
corresponding images are shown in Figure 1. It has been
shown in [15] that images can be classified into one of
the different stages. Each stage model has a certain depth
layout in terms of layers at a certain distance to the
camera. In this way, color constancy can be applied per
depth layer.

As shown in Figure 1, the depth structures of the
stage models are shown in different colors. Each stage
has a unique depth pattern. For instance, images of stage
“sky+bkg+gnd” are divided in three layers: sky (in blue),
background (in yellow) and ground (in brown). While,
images of stage “box” will be divided in five layers: top
(in blue), bottom (in brown), right (in green), left (in red),
and middle (in yellow). On the other hand, images of stage
ground will not be divided as it only contains one depth
layer.

IV. Datasets and Similarity Metrics
Four independent data sets are used in the experiments.

In order to obtain a classifier with proper generalization,
an independent data set (denoted as “stages data set”)
is used to train the stage classifiers [15]. The data set
consists of 3589 images classified as 15 different cat-
egories representing the scene geometries (stages): 151
sky+bkg+gnd, 333 bkgGnd, 81 skyGnd, 212 ground(gnd),
139 gndDiagBkgLR, 132 gndDiagBkgRL, 75 diagBkgLR,
71 diagBkgRL, 84 box, 57 1side-wallLR, 69 1side-wallRL,
266 corner, 960 Person (persBkg), 833 noDepth, and 126
tabPersBkg. Images are taken under a large variety of
lighting conditions.

As a second data set, the color constancy data set
of Ciurea and Funt [21], referred to as real-world data
set, is used for testing. Note that this data set contains
the ground truth for color constancy while no ground
truth is provided for stages data set. Therefore, the color
constancy algorithms are evaluated on real-world data
set. The real-world data set consists of more than 11, 000
images, extracted from 2 hours of video for a wide variety
of settings such as indoor, outdoor, desert,cityscape, etc.
There are in total 15 different video clips taken at different
places and with varying lighting conditions. As there exists
a correlation among images of the same video clip, we test
the color constancy algorithms on a subset of uncorre-
lated images composed of 711 images. These images are
manually selected and annotated. A few example images
are shown in figure 2(b). In each image, there is a grey
ball at the right bottom, which is used to capture the
ground truth of the light source. Note that the grey ball
is masked when the illumination is estimated. In order to
learn our models for this dataset, we use 15 folds cross-
validation. The ground truth of the real-world dataset is
obtained using the original images (color model is NTSC-
RGB). Therefore, the ground truth is recomputed by [22]
for converting the images from NTSC-RGB to linear RGB
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assuming gamma is equal to 2.2. This modified dataset is
named linear real-world.

The third set is the ColorChecker dataset provided by
Shi and Funt [23]. This dataset consists of 568 images,
both indoor and outdoor. For this dataset, we used three-
fold cross-validation to learn our models.

As a fourth set, the training data set that is created
based on spectral reflectance data presented in [24]. This
data set originally comprises only surface and illumi-
nant spectra, which are first combined into (R, G, B)-
values. Then, using these generated pixel colors, several
Mondrian-like images are created, which all have different
properties in the number of edges, the amount of texture
and contrast. Since only material surfaces are present in
the original data set, shadow gradients are added to sev-
eral images to enlarge their photo-metrical variety. Note
that the resulting images contain up to tens of different
surfaces, hence, many different transitions, simulating the
statistics of real-world images as close as possible. A few
example images are shown in figure 2(a). This data set
will be called the Mondrian data set in the remainder of
the paper.

(a) Mondrian images.

(b) Real-world images.

Fig. 2. Examples of images that are in the two data sets that are used
in this paper. The first data set consists of images that are generated
using surface reflectance spectra combined with illuminant spectra
[24]. The second data set consists of real-world images [21].

A. Metrics
Two performance measures are used in this paper: stage

classification is evaluated using the average precision,
while the angular error is used to validate the performance
of the color constancy algorithms.

Average precision (AP). The average precision is
equivalent to the area under a precision-recall curve. It
combines precision and recall in a single number. Mean
average precision (MAP) is used to evaluate the perfor-
mance of the features over all the stages, which is obtained
by averaging the average precisions over all stages.

Angular error. In order to evaluate the performance
of the color constancy algorithms, the angular error ε is
used,

ε = cos−1(êl.êe), (5)

where êl is the normalized ground truth of the illumina-
tion, while êe is the normalized estimation. Both mean and
median angular errors are taken as performance indicator.

Name % in data set AP
sky+bkg+gnd 9.1% 0.65
bkgGnd 9.9% 0.34
skyGnd 2.7% 0.34
gnd 12.1% 0.67
gndDiagBkgLR 6.6% 0.16
gndDiagBkgRL 4.6% 0.16
diagBkgLR 4.6% 0.12
diagBkgRL 3.8% 0.15
box 8.0% 0.37
1side-wallLR 12.9% 0.46
1side-wallRL 15.6% 0.41
corner 6.5% 0.15
persBkg 3.5% 0.19
MAP 0.320

TABLE I
Stage classification results for each stage using the
RGB-SIFT feature. The last row gives mean average
precision over all stages. stages data set is used for

training the stage classifiers. real world data set used for
testing the color constancy algorithms, see [10] for details.

V. Stage Classifier & Segmentation Masks
To build the stage classifier, we use the Bag-of-Words

(BoW) classification framework proposed by Van de Sande
et al. [25]. The RGB SIFT descriptors are used as it
outperforms other variants of the SIFT-feature [26]. For
the vocabulary construction, we use a standard k-means
to build a vocabulary of size 4000. After the assignment
stage, we use a two level Spatial Pyramid (SP) [27].
A compact spatial pyramid is obtained by compressing
the original SP histograms based on the method pro-
posed in [28]. For the classification stage, we use generic
1−vs−all−-based classifiers with χ2 kernel, see [29], [25].
The output of the classifier is a single stage label. In this
paper, there are a total of 13 classifiers corresponding to
the 13 stages used (excluding noDepth and tabPersBkg)
as in [10]. These stages are specific characteristics of the
data set used in [15].

The performance of the stage classification for each
stage is shown in Table I. From this table, it can be derived
that for some stages, such as sky+bkg+gnd, and gnd, the
results are satisfying. For other stages, like diagBkgLR and
diagBkgRL, the results still leave room for improvement.
This is due to occlusion occuring in these categories,
making it hard to classify them correctly.

A. Illumination Estimation from Stages
After stage classification, the proper color constancy

algorithm is selected per stage. In [9], algorithm selection
is based on the angular error of the five different color
constancy algorithms discussed in section III. Algorithms
are applied on the training images of a specific stage. The
algorithm with the lowest angular error is assigned to the
stage under consideration. Note that training the stage
classifier and the selection of the proper color constancy
algorithm per stage is processed off-line. Then, the on-
line processing is to predict which stage an (unknown)
image belongs to by using the trained classifier. Finally,
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the color constancy algorithm that has been assigned to
that stage will be used to estimate the light source to
correct the image. This method implies global illumination,
as no depth knowledge is exploited here, see [9] for details.

B. Image Segmentation to Obtain Depth Layers
Different depth layers (image segments) of a stage ge-

ometry model correspond to a scene part at a certain
depth. Each layer represents geometrical entities like walls,
ground, and sky. We will use the image division pro-
vided by the stage model to learn which color constancy
algorithm performs best for each layer. Both hard and
soft segmentation is considered, the latter taking the
uncertainty into account due to the rough outline of the
stage geometry. Both of them are based on the occurrence
probability in the training set. Ground truth is obtained
by manual annotation, thereby dividing the training set
according to the stage patterns, and fitting the parameters
of each stage model (horizon, vanishing points) to visually
best fit the underlying data. For this purpose, the stages
dataset is used to obtain the hard and soft segmentation
masks that represent each scene geometry category.

More precisely, suppose that an image j belongs to
stage S, which is composed of N depth layers (partitions).
Correspondingly, there will be N mask maps for stage S
denoted by T . Hence, the mask map Ti for a specific stage
partition i is obtained by taking the average of the mask
maps, as in [10]:

Ti(x) =
∑n
j=1 Mj,i(x)

n
, (6)

where n is the total number of images in the training
data, and Mj,i(x) is the mask map of the jth image for
ith partition. Note that, Mj,i(x) is an indicator function:
Mj,i(x) = 1, if x belongs to the ith partition and 0
otherwise, see [10] for details.

Hard Segmentation: Mask maps are used to auto-
matically divide the images. Assuming that the images of
stage S can be partitioned into N layers, then there exist
N mask maps. The binary mask map is defined as follows:

T ′i(x) =

 1, Ti(x) = Nmax
j=1

Tj(x),

0, otherwise.
(7)

As a consequence, the values in the hard mask map are
either 0 or 1, as shown in Figure 3(b). After the maximum
mask map is obtained, the color of the light source is
estimated using pixels from one layer, while, other pixels
are ignored. In this way, multiple light sources are allowed
per scene (i.e. one per depth layer).

Soft Segmentation: As stage classification is a rough
estimation of the scene geometry, some locations (pixels)
are more reliable than others to belong to a certain
layer. To this end, we assign different confidence values to
locations. We set the confidence values of pixels to Ti(x),
which indicates the occurrence frequency of pixel positions
appearing in the training data set. Hence, given a location

(a) Original image

(b) Hard segmentation mask

(c) Soft segmentation mask

(d) Original image

(e) Hard segmentation mask

(f) Soft segmentation mask

Fig. 3. An example of hard and soft segmentation mask maps. The
original image (a) belongs to stage “skyGnd” and (d) belongs to stage
“gndDiagBkgLR”. The mask maps are of the same size as the original
image. The difference between hard segmentation mask map, shown
in figures (b), (e), and the soft segmentation mask map, shown in
figures (c), (f), is that values in figures (b), (e) are either 0 or 1.
While values in figures (c), (f) are between 0 and 1.

(pixel position), the larger the confidence value, the more
probable it belongs to that layer (image segment). Note
that the values of the soft segmentation mask map are
between 0 and 1, as shown in figure 3(c) of stage “skyGnd”,
and figure 3(f) of stage “gndDiagBkgLR”.

After the mask map has been obtained by hard or
soft segmentation, images in the training data set will
be divided into several segments. The most suitable color
constancy algorithm will be selected for each segment.
This method takes advantage of local illumination in which
the color of the light source is estimated using pixels
from one layer while other pixels are ignored. In this way,
multiple light sources are allowed per scene.

C. Illumination Estimation from Segmentation
The method using scene geometry for color constancy

in [10] consists of the following steps: first, images are
classified into stages. Then, according to the assigned stage
model, images are divided into depth layers. Then, for
each depth layer, the proper color constancy algorithm is
selected. This is achieved by analyzing the angular errors
for all color constancy algorithms applied on all images in
the training data set of this stage. Hence, the stage model
is labeled with depth layers and their corresponding color
constancy methods, providing the highest color constancy
accuracy (i.e. lowest angular error). Each depth layer
is allowed to be illuminated by a different (single) light
source. In the case of a single layer (i.e. the whole image),
illumination estimation will be computed using the best
color constancy algorithm for its assigned stage. The whole
process is shown in Figure 4.
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Fig. 4. Outline of color constancy using 3D scene geometry in [10]. Note that the codebook models and the stage models are obtained
off-line. After the stage segmentation is obtained by hard or soft segmentation, the most suitable color constancy algorithm (with the lowest
angular error) is selected for each layer of the stage. Stage segmentation and color constancy algorithm selection are trained on the data set
beforehand.

For each unseen image in the test data set, the on-
line process is as follows: first, the image is classified into
stage S. Then, it is divided according to the mask map
of stage S, which has been obtained by the training data
set beforehand. Further, the color of the light source is
estimated for each depth layer using its assigned color con-
stancy algorithm. The final estimated illumination for the
entire image is a weighted combination of the illuminations
estimated for each depth layer. This weighting scheme
provides the confidence degree between the estimated
illumination (assigned based on the best performing color
constancy algorithm) and the actual illumination. To be
precise, the weight of the estimated illumination for each
layer is inversely proportional to its angular error, see [10]
for details.

D. Evaluation
In this section, we will first show experimental results for

several state-of-the-art color constancy algorithms. Next,
the results are compared to the performance for estimating
the illumination by exploiting both the stages and the
depth knowledge within the stages.

The algorithms that are evaluated here are the five
instantiations discussed in Section III. The results for
single algorithms are shown in Table II. These methods
are applied to each image in Real-World dataset. Table
II shows that edge-based methods (i.e. 1st-order Grey-
Edge and 2nd-order Grey-Edge) outperform the pixel-
based methods (i.e Grey-World, White-Patch, and general
Grey-World).

Results of Illumination Estimation from Stages
(Without Segmentation): Evaluation of the proposed
methods is performed using the leave-one-out cross vali-
dation method. Illumination estimation is computed using
the entire image. The median angular error of the proposed
method without segmentation is 4.8◦ as shown in Table
II. Compared with the best-performing algorithm, i.e.,
the 1st-order Grey-Edge, a decrease of almost 8% on the
median angular error is achieved. Results on individual
stages reveal that most of the color constancy algorithms
have a preference for specific stages. For instance, 0th-
order methods like the White-Patch and the general Grey-

World prefer stages where depth is significant, like the
stage sky+background+ground. Such stages with a large
depth can contain haze, which causes a relatively low
signal-to-noise ratio. It is known from [8] that methods
that are based on higher-order statistics like the 2nd-order
Grey-Edge do not perform well on such images. On the
other hand, the 2nd-order Grey-Edge algorithm performs
better on images with a high amount of texture, e.g.
many edges. This is reflected in a preference for stages like
diagBkgLR and diagBkgRL that generally contain images
with much contrast and many edges.

Results of Illumination Estimation from Segmen-
tation:

a) Hard Segmentation: The performance of the pro-
posed method using hard segmentation on each stage
is shown in Figure 5. The performance of the proposed
method using hard segmentation on the entire data set
real-world data set is given in Table II: the median angular
error equals 4.5◦. Compared to the baseline, the median
angular error is reduced by almost 14%.

b) Soft Segmentation: The performance of the pro-
posed method using soft segmentation on each stage is
shown in Figure 5 while the result over the whole data
set is shown in Table II: the median angular error is 4.6◦,
which is quite similar to the proposed method using hard
segmentation. The proposed method using soft segmen-
tation makes an improvement of 12% in median angular
error over the baseline.

Discussion. Manual classification in Table II, shows
how the stage classification influences the final results.
Using this ideal classifier (i.e. the mean average precision
is 1), the median angular errors of the method without
segmentation is reduced to 4.6◦. Using hard segmentation,
the best-performance that can be obtained is 3.7◦ for the
median angular error, while the median angular error can
be further reduced to 3.6◦ by using soft segmentation.
Hence, improving stage classification will further improve
the color constancy results significantly.

Moreover, due to the stage classification, we do not only
improve the overall illumination estimation accuracy, but
we can also assess the illumination color of the various
geometrical constellations of a scene. This is outlined in
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Method Mean Median
Grey-World 7.4◦ 7.0◦

White-Patch 7.3◦ 6.1◦

general Grey-World 6.4◦ 5.8◦

1st-order Grey-Edge 6.0◦ 5.2◦

2nd-order Grey-Edge 6.0◦ 5.4◦

Proposed (auto): without segmentation 5.7◦ (− 5%) 4.8◦ (− 8%)
Proposed (auto): hard segmentation 5.4◦ (−10%) 4.5◦ (−14%)
Proposed (auto): soft segmentation 5.4◦ (−10%) 4.6◦ (−12%)
Proposed (manual): without segmentation 5.5◦ (− 8%) 4.6◦ (−12%)
Proposed (manual): hard segmentation 4.7◦ (−22%) 3.7◦ (−29%)
Proposed (manual): soft segmentation 4.7◦ (−22%) 3.6◦ (−31%)

TABLE II
Performance of several color constancy algorithms on the real-world data set. Proposed (auto) means that the proposed

methods are applied to automatically classified images, while proposed (manual) indicates that our methods are evaluated
on manually classified images. Note that, results in bold indicate the best performing method within each category.
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Fig. 5. Median angular errors of color constancy algorithms for each
stage on the real-world data set from [10]. The stage models are shown
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agBkgndRL”, “box”, “1sidewall-LR”, “1side-wallRL”, “corner”, “
persBkg”.

Figure 5, where each stage is represented by its best
estimation algorithm. Expanding from this, we propose
to estimate the light source color at the various depth
layers as indicated by the 3D stage model. This allows
the estimation of a distant light source and to distinguish a
nearby illumination (indoor, shadow) from a far away light
source (outdoor, sunlight). In the next section, we propose
to exploit scene depth (i.e. scene geometry) together with
natural image statistics to achieve a proper selection of
color constancy algorithms per depth.

E. Multiple Illumination
In this section, we explain the assumptions of our model

for distinguishing nearby light sources (e.g. indoor illumi-
nation) from distant illuminations (e.g., outdoor illumina-
tion). Hence, the estimation of multiple light sources per
scene geometry is achieved. For this purpose, a compar-

Segmentation Estimation Groundtruth
sky (M) (0.57, 0.58, 0.58)

(0.56, 0.58, 0.58)background (M) (0.59, 0.58, 0.55)
ground (M) ((0.60, 0.58, 0.54)

TABLE III
The mean of the Ground-truth Illumination (M) for stage
sky+bkgnd+gnd along with the euclidean distance between

M and the standard deviation (std), Compared to those
obtained using the illumination of the White patches within

each specific segment.

ison between the estimated illumination per depth layer
and its corresponding ground truth illumination, is to be
evaluated.

However, such ground truth is not yet available in the
current color constancy data sets. Consequently, we did
not pursue evaluation of these extensions. Alternatively,
in our experiments we use the available ground truth
illumination for the whole image (global illumination) as
a baseline to compare with the estimated illumination per
depth.

Expanding from this, we propose an experiment based
on the global image illumination and the well-known
White-Patch assumption, which states that a surface with
perfect reflectance properties will reflect the full range
of light that it captures. Consequently, the color of this
perfect reflectance is exactly the color of the light source.
Accordingly, for stage S, we manually select the White-
Patches for each of its constituent segments. Next, the
mean illumination of those manually selected patches per
segment, is then compared with the mean ground truth
illumination (available for each image) of the given stage.
Specific example for stage sky+bkgnd+gnd is shown in
Table III.

Discussion: The quantitative results shown in table III,
demonstrate that when the object is near the light source,
its estimated illumination is closer to the illumination of
the light source. However, when the object is far away from
the light source then its estimated illumination is deviated
from the light source illumination. For instance, for the sky
+ background + ground scene geometry category, which
is an outdoor scene category, and, consequently, its light
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Fig. 6. Outline of the proposed method using 3D scene geometry, Natural Image Statistics features (NIS) and color constancy. First, an input
image is classified into a stage, and then segmented into depth layers. Then, the method exploits the local image statistics per depth (image
segment) for selecting the most appropriate color constancy algorithm. The final estimated illumination for the whole image is obtained by
a weighted combination of the estimated illumination per depth. Note that, the NIS classifiers are trained (using cross-validation scheme)
and tested on the Real-World dataset.

source illumination is the sunlight illumination: for the
sky layer, which is the nearest to the light source, its
estimated illumination is the closest to the ground-truth
illumination. However, for the ground layer which is the
farthest from the light source, it has the most deviated
illumination estimation from the light source (ground-
truth).

VI. Illumination Estimation using Segmentation
and Natural Image Statistics

The proposed method falls into the learning-based color
constancy category. An alternative approach is proposed
in [17], that exploits the relation between natural image
statistics and color constancy. The method is based on a
global selection mechanism, where the Weibull distribution
is used to select the proper color constancy method per
image. In contrast, this paper proposes a novel strategy
for selecting the most appropriate color constancy method
per image depth, based on its local natural image statistics
features.

The main distinction between this work and other
learning based color constancy methods that estimate
illumination for image regions, such as [11], is that they
use training data to learn surfaces (regions) based on
texture features. For a test image, they first segment it
into regions. For each image region, similar surfaces are
then found (in the training dataset), based on weak color
features (i.e. comparing the statistics of pixels belonging to
similar surfaces with the target surface). Further, they use
the ground truth of corresponding surfaces for illumination
estimation per segment. Meanwhile, we utilize spatial
information based on the 3D scene geometry models and
its constituent depths (segments) for the estimation of il-
lumination per depth. We also exploit the Weibull features
which are more efficient features (instead of the weak color
features used in [11]) for estimating the illumination per
segment. Finally, we studied and applied more complex
methods for integrating the estimated illumination per
depth (segment) into a unique illumination estimate.

To this end, the illumination estimation task is reduced
to the following steps: (1) learning stage classifiers using

the training images of the stages dataset; (2) Learning the
Natural Image Statistics (NIS) classifiers [17] per depth
from training images of the color constancy datasets; 3)
Estimating the illumination for each segment of the target
image based on its local natural image statistics and the
pre-learned NIS model per depth; 4) Combining these
weighted estimated illuminations per depth into a unique
more accurate estimate. The whole process is shown in
Figure 6.

A. Depth-NIS Model
We use the training images of each stage S to learn

Depth-NIS models per stage. First, the training images
of each stage S are partitioned into segments using hard
or soft segmentation maps (described in section V-B).
For each image k in the training set of S, the local
image statistics features ωkj belonging to segment j are
extracted. Next, labels yj of these stage images, belonging
to segment j, are computed. More precisely, let M be
the set of color constancy algorithms that are considered,
where Mi denotes algorithm i. Further, the accuracy of the
estimated illumination of algorithm i on layer j is denoted
by εi(j). This is computed by analyzing the angular errors
for all color constancy algorithms for depth layer j. The
color constancy algorithm with the lowest angular error
is assigned to this segment. Hence, label yj is derived
using the performance of the color constancy algorithms
on segment j.

yj = mini(εi(j)) (8)

where i denotes the color constancy method and j is the
depth layer (image segment) in stage S, respectively.

Finally, a NIS classifier is created for each depth layer
layerj . The labels yj , determined in the previous step,
are used as classes. For an unknown test image we first
apply the stage classifier. After the stage assignment and
segmentation steps, extract NIS features for image seg-
ment j. Then, apply layerj NIS trained classifier on these
extracted features. The output of the classifier is a color
constancy method which is assigned to image segment j
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Fig. 7. Outline of color constancy using 3D scene geometry, Natural Image Statistics features (NIS) and color constancy. For a test image,
stage classification and image segementation are done first. The selection of the proper color constancy method is done using NIS trained
classifiers per stage depth. The method is trained on an independent dataset Mondrian dataset and the tested on the Real-World dataset.

for estimating its illumination. The final estimated illumi-
nation for a test image is a weighted combination of the
estimated illuminations for each segment j belonging to
its assigned stage.

For the purpose of evaluating our approach, the two
different schemes proposed in [17], for training the required
NIS classifiers are investigated. In the first scheme which
is based on cross-validation we use the real-world data
set for both training and evaluating our approach. The
real-world data set will be divided into 15 parts, then
the method will be trained on 14 parts of the data and
tested on the remaining part. This procedure is repeated
15 times. Hence, every image exists exactly once in the
test set. The whole process is shown in Figure 6. The
second scheme consists of using an independent data set
which we refer to as Mondrian data set for training the
NIS classifiers. Meanwhile, the real-world data set will be
used for the testing phase. In this way, the data sets for
training and testing are completely different. This scenario
reflects the case, when the data set (used for testing the
method) is unknown which is the most general case. The
whole process is shown in Figure 7.

B. Weighted illumination Estimation per Depth
In the previous section, we provided an efficient method

for estimating the illumination per image segment S based
on its local statistics. Here, we analyze how to optimally
fuse the locally estimated illumination to generate a new
illumination estimate. The simplest method is to take the
average of the illumination estimates for each segment
S. However, a straight forward extension is to take the
weighted average of all these estimated illuminations.
Hence, if n color constancy algorithms corresponding to
the n segments of an image are to be combined, then the
weighted average is defined as:

ē=
∑n
i wiei,

where, i refers to an image segment, ei is the estimated
illumination for segment i and wi is the learned weight
assigned for the estimated illumination ei.

In particular, the weighting of the estimated illumi-
nation for an image segment S is assigned based on
the stage category it belongs to. Concretely, the ground-
truth illuminations (of the training images) belonging to
each stage, are used to learn a Stage Illuminant model.
In this section, we analyze four approaches to model
the ground-truth illumination per stage, and further to
combine multiple illuminations, namely Bayesian, Kernel
density, Histogram smooth, Mixture of Gaussians (MOG)
and Error Difference Confidence (EDC) schemes. To be
precise, the different approaches are as follows.

Classifiers: For the purpose of learning the stage-
illuminant models used for weighting the estimated illumi-
nation per depth, well-known classifiers such as Bayesian
and MOG are investigated. For each classifier, we learn
its underlying parameters using the training data of each
stage. Finally, trained classifiers (i.e., Bayes & MOG) are
obtained per stage. For an unknown test image, after the
stage classification and segmentation steps, the estimated
illumination for each image segment is assigned. To this
end, the learned stage-illuminant classifiers is then used
to weight the locally estimated illumination. For instance,
we use the MOG stage-illuminant classifier, to derive the
weighting of the estimated illumination for each image
segment. This implies using the underlying parameters
(mean and variance of k Gaussian distributions learned
beforehand) of the MOG model.

Histograms: This approach exploits frequency his-
tograms generated from the ground-truth illuminations of
the training images within each stage. These frequency
histograms (i.e., grids) measure the occurrence frequency
of both the normalized red and green values of the ground-
truth illuminations for each stage. Concretely, the output
is a stage frequency grid which reveals how frequent an
input illumination occur for a certain stage. To this end,
we introduce the Kernel density and the Histogram smooth
methods which exploit the occurrence frequency of the
ground-truth illuminations for weighting the estimated
illumination. In Kernel density, the generated histograms
usually contain large amount of empty bins, which leads
to noisy weighting estimates. In contrast, in the Histogram
smooth scheme, the obtained histograms are smoothed to
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reduce the noise effect due to the existence of the empty
bins.

The testing procedure for an input test image is as fol-
lows: first, the image is classified to the correct stage, and
further segmented. Then, the illumination is estimated and
weighted for each segment. The weight of each estimated
illumination is assigned by first extracting its normalized
red and green illuminant values. These values are then
mapped within the appropriate frequency grid (learned
beforehand) for its assigned stage. Finally, the output
weight is the corresponding occurrence value for the closest
ground-truth illumination to the given input illumination.

EDC Criteria: Finally, we examine the weighting
approach used in [17] for weighting the estimated illumi-
nation per segment. The angular error E between the esti-
mated illumination for segment S and the image ground-
truth illumination is exploited. In particular, weighting
the estimated illumination of each segment is assigned
with respect to the inverse of its angular error. Hence, the
larger the value of the angular error E for the estimated
illumination, the smaller its assigned weighting value. We
refer to this scheme as Error Difference Confidence (EDC)
criteria.

For the purpose of evaluating an unknown test im-
age, the process works as follows: After classification and
segmentation, the local image statistic features for each
segment S are extracted. Then, a trained NIS-Classifier
for segment S (learned beforehand) is used with these
features to estimate its illumination. The angular error E
between the estimated illumination of segment S and the
ground truth illumination of the input image is obtained.
The inverse of the angular error E is used for weighting
the estimated illumination of segment S.

C. Color Correction
The final step, is to combine all these weighted esti-

mates of each segment into a single estimated illumination.
The single estimated illumination is then compared with
the ground-truth illumination for the input image. To
be precise, we first sum up all the weighted estimated
illuminations into a single estimated illumination sumwe.
Followed by, normalizing the single illumination sumwe by
the total weights used (i.e., summation of the inverse of the
angular errors for each segment). Finally, we calculate the
angular error between the single estimated illumination
and ground-truth illumination of the input image.

VII. Experiments
In this section, the proposed method is evaluated and

compared with the state-of-the-art color constancy meth-
ods on data sets including hyper-spectral, ColorChecker,
linear and non-linear real-world data sets. The main
advantage of hyper-spectral data is that many different
illuminants can be used to realistically render the same
scene under various light sources. However, the simulation
of illuminants generally does not include real-world effects
like inter-reflections and non-uniformity. Consequently, the

TABLE IV
Performance of color constancy algorithms applied on

hard and soft segmented images, trained and tested over
the real-world data set using cross-validation (cv). The

proposed methods are applied to automatically classified
images. NIS, GE, EDC and KD refer to Natural Image

Statistics, Grey-Edge algorithms, Angular Difference Confidence
and Kernel Density weighting schemes (see text).

Method Mean Median
Baseline: 1st-order GE 6.0◦ 5.2◦

Baseline: Global NIS 5.7◦ (−5%) 4.7◦ (−10%)
indoor-outdoor classification 7.0◦ (+17%) 6.5◦ (+25%)
NIS hard-cv-Average 5.4◦ (−10%) 4.6◦ (−12%)
NIS hard-cv-Bayesian 4.9◦ (−18%) 3.7◦ (−29%)
NIS hard-cv-KD 4.7◦ (−22%) 3.7◦ (−29%)
NIS hard-cv-HistSmooth 4.7◦ (−22%) 3.6◦ (−31%)
NIS hard-cv-MOG 4.7◦ (−22%) 3.4◦ (−35%)
NIS hard-cv-EDC 3.9◦ (−35%) 2.8◦ (−46%)
NIS hard-Mondrian 4.7◦ (−22%) 3.3◦ (−37%)
NIS soft-cv-Average 5.3◦ (−12%) 4.6◦ (−12%)
NIS softcv-Bayesian 4.6◦ (−23%) 3.5◦ (−33%)
NIS softcv-KD 4.5◦ (−25%) 3.3◦ (−37%)
NIS softcv-HistSmooth 4.5◦ (−25%) 3.3◦ (−37%)
NIS softcv-MOG 4.5◦ (−25%) 3.2◦ (−38%)
NIS soft-cv-EDC 3.9◦ (−35%) 2.6◦ (−50%)
NIS soft-cv-Mondrian 5.4◦ (−10%) 4.4◦ (−15%)

evaluation of real-world RGB-images and ColorChecker
results in more realistic performance evaluations. Next,
the performance of the proposed method for estimating
image illuminant based on its assigned scene geometry, the
local image statistics per depth together with the proposed
fusion algorithms are given.

A. Illumination Estimation using NIS-real-world
In this experiment, the performance of the proposed

scheme for training our approach using part of the real-
world data, and testing it using another independent part
is examined. Hence, no direct relation exists, between the
training data and the testing data (see Figure 6). This
scheme corresponds to the situation where the circum-
stances under which the system is used are known apriori.
The method is evaluated based on both hard and soft
segmentations together with the different weighting strate-
gies discussed in section VI-B for fusing the illumination
estimates obtained for each image segment.

Hard Segmentation & NIS-real-world: Table IV
shows the performance of the proposed method using hard
segmentation (denoted as NIS-hard-cv) and a simple aver-
age (denoted as “Average”) of the estimated illuminations.
The obtained results show that simple averaging of the
output illuminations improves the results compared to the
baseline algorithms. Compared to the global Natural Image
Statistics (NIS), the median angular error is reduced by
almost 5%. While, a reduction of 12% in the median
angular error is obtained compared to 1st−order Grey
Edge baseline.

In addition to the use of only single algorithms, two
combination algorithms are evaluated. The first method
is proposed by [7] and distinguishes between indoor and
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(a) Original image (b) Ground truth (c) Correction
using NIS+hard

segmentation

(d) Correction
using NIS+soft
segmentation

(e) Correction
using 1st-order

Grey-edge

(f) Correction
using global-NIS

Fig. 8. Results of color constancy. The angular error is given on the grey ball, which is masked during illumination estimation.

outdoor images. They propose to use the shades-of-grey
method for indoor images and the 2nd-order Grey-Edge
method for outdoor images. For convenience, we used
manual annotation of indoor and outdoor images instead
of the indoor-outdoor classifier proposed in [7]. As can
be seen in Table IV, the accuracy of the illumination
estimates does not improve with respect to the single
baseline color constancy algorithm.

Another combination method is proposed by [8], where
they use global image statistics for the selection of the
most appropriate color constancy algorithm. Results indi-
cate that the performance indeed improves with respect
to the best-performing single algorithm, see table IV.
However, the scene geometry is not taken into account as
this method uses global selection of the most appropriate
color constancy algorithm.

Next, we evaluate the performance of the weighting
schemes proposed for combining the estimated illumina-
tions, namely, Bayesian, Mixture-of-Gaussians “MOG”,
Kernel-Density “KD”, Histogram-Smooth “HistSmooth”,
and Error Difference confidence “EDC”, respectively. Us-
ing a weighted average instead of a simple average per-
forms significantly better than the baseline. The median
error decreased by around 29% based on the Bayesian
weighting scheme with respect to the baseline. Compared
to the Bayesian method, the Kernel-density decreased the
mean error from 4.9◦ to 4.7◦, while maintaining the same
median error 3.7◦. In addition, the use of the Histogram-
smooth method results in a reduction of the median error
to 3.6◦ due to the reduction of the noise level obtained,
while smoothing the histogram empty bins. Further, the
proposed method based on MOG scheme decreased the
median error to 3.4◦ using two Gaussians. Finally, the
EDC weighting scheme leads to a major drop on both
the median and the mean angular errors up to 2.8◦ and
3.9◦, respectively. These obtained results excel the state-
of-art results significantly; a reduction of 35% in the mean
angular error and 46% in the median error is obtained
w.r.t. the baseline (see table IV).

When using a perfect classifier (i.e., all of the test images
are correctly classified into stages), the performance of
the proposed method achieve an improvement of 48%
of median error compared to the best performing single
color constancy algorithm.

Soft Segmentation & NIS-real-world: The perfor-
mance of the proposed method using soft segmentation
over the real-world data set is shown in Table IV. The
proposed method based on the simple average of estimated
illuminations (denoted as NIS-soft-cv-average), results in a
performance improvement of almost 12% compared to the
baseline. Results obtained using the weighted average of
the estimated illuminations improve the performance over
the simple averaging combination scheme. The Bayesian
method decreased the median error to 3.5◦ compared to
4.6◦ using the simple averaging scheme. Additionally, the
median errors obtained using the MOG, kernel density,
and Histogram smooth weighting methods are reduced
further over the Bayesian up to 3.3◦, 3.3◦, and 3.2◦,
respectively. Finally, the EDC method leads to a major
reduction in the median angular error up to 2.6◦. This
results in an overall performance improvement of almost
50% with respect to the baseline (i.e., 5.2◦).

When using a perfect classifier (i.e., all of the test images
are correctly classified into stages), the performance of
the proposed method achieve an improvement of 52% of
median error compared to the best performing single color
constancy algorithm.

B. Illumination Estimation using NIS-Mondrian
In this experiment, the performance of the second ap-

proach proposed for training our method is evaluated.
In particular, the training is done using an independent
dataset (Mondrian dataset), and tested on the real-world
dataset. This scheme corresponds to the most generic
approach of the proposed method, where the testing is un-
known. The method is evaluated based on both hard and
soft segmentations and the different weighting strategies
for fusing the estimated illumination per segment.
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Hard Segmentation & NIS-Mondrian: Results of
the second experiment, learned on the Mondrian data set
and tested on the real-world data set based on the hard
segmentation masks (denoted by NIS hard-Mondrian in
table IV) performs significantly better than the baseline.
Compared to the Global NIS baseline, the median angular
error is reduced by around 30%. Meanwhile, a 37% reduc-
tion on the median error is obtained (i.e., from 5.2◦ up to
3.3◦) compared to the 1st−order Grey Edge baseline.

Soft Segmentation & NIS-Mondrian: The proposed
algorithm learned on the Mondrian data set and tested
on the real-world data set based on the soft segmen-
tation masks (denoted by NIS soft-Mondrian in table
IV) performs significantly better than the baseline. An
improvement on the median angular error from 5.2◦ up
to 4.4◦ is obtained (i.e., 15% improvement).

In addition to automatic classification, manual
classification is used to determine how the stage
classification performance influences the final results.
Using this ideal classifier, the best-performance that
can be obtained is 3.3◦ (i.e., 37% improvement) for the
median angular error based on soft segmentation, while
the median angular error can be further reduced to 3.2◦
(i.e., 38% improvement) by using hard segmentation.

Discussion: In the Mondrian experiment: the test-data
is unknown, and corresponds to the most generic approach
of the proposed method. No learning step is required
for a new data set, since the results of the classifier are
independent of the test data. On the other hand, the
proposed algorithm learned for the real-world data set,
requires data with enough variety to train the method. In
this experiment, test-data is known making the proposed
method less generic. Hence, a learning step is required for
each new data set.

Results show significant improvement of the real-world
data set case over the Mondrian case (with no prior
knowledge): the median angular error drops to 2.8◦ and
2.6◦ based on hard and soft segmentations, respectively.
However, from the experiments, it can be concluded that
the proposed method can be trained using completely
independent training set, and still performs significantly
better than the baseline algorithm (i.e., 5.2◦).

Figure 8 presents three images, which are correctly
classified based on our proposed approach. The proposed
method using soft segmentation is more effective in the
presence of shadow or shading edges.

C. Linear Real-World and ColorChecker Datasets Evalua-
tion

Finally, we evaluate our method on the linear real-world
and the ColorChecker datasets. Note that the training is
done using a) a portion of the datasets used for evaluation
using cross-validation, and b) an independent Mondrian
dataset. The results in table V and table VI show the
obtained results based on our proposed method for the
real-world and the ColorChecker datasets, respectively. As

TABLE V
Performance of color constancy algorithms applied on hard

and soft segmented images, trained over Linear real-world
data set using cross-validation (cv) or using the independent

Mondrian data set. The proposed methods are applied to
automatically classified images. GE, EDC and KD refer to
Grey-Edge algorithm, Angular Difference Confidence and Kernel

Density weighting schemes, respectively (see text).

Method Mean Median
Baseline: 1storder GE 14.5◦ 13.0◦

Baseline: Global NIS 12.6◦ (−13%) 12.2◦ (−6%)
NIS hard-cv Average 11.4◦ (−21%) 9.5◦ (−27%)
NIS hard-cv-Bayesian 11.1◦ (−23%) 9.4◦ (−28%)
NIS hard-cv-KD 11.1◦ (−23%) 9.4◦ (−28%)
NIS hard-cv-HistSmooth 10.9◦ (−25%) 9.4◦ (−28%)
NIS hard-cv-MOG 10.9◦ (−25%) 9.0◦ (−31%)
NIS hard-cv-EDC 10.6◦ (−27%) 9.2◦ (−29%)
NIS hard-Mondrian 10.8◦ (−26%) 8.7◦ (−33%)
NIS soft-cv-Average 11.4◦ (−21%) 10.0◦ (−23%)
NIS soft-cv-Bayesian 11.0◦ (−24%) 9.5◦ (−27%)
NIS soft-cv-KD 11.0◦ (−24%) 9.5◦ (−27%)
NIS soft-cv-HistSmooth 11.0◦ (−24%) 9.5◦ (−27%)
NIS soft-cv-MOG 11.0◦ (−24%) 9.4◦ (−28%)
NIS soft-cv-EDC 10.6◦ (−27%) 9.4◦ (−28%)
NIS soft-Mondrian 11.0◦ (−24%) 8.6◦ (−34%)

expected, the various combination schemes applied on the
estimated illumination of each segment improve the results
over the simple averaging combination scheme. In addi-
tion, the EDC method results in achieving the minimum
angular error between the estimated illumination and the
ground-truth illumination (i.e., the best performance).
Finally, in table VI we compare with the method proposed
in [11]. The proposed method resulted in improving the
performance. We attribute this to the important spatial
knowledge that we exploit based on the proposed 3D
scene geometry, together with the efficient natural image
statistics features for estimating illumination per depth
and integrating these weighted estimated illuminations
efficiently into a unique single illumination. These are all
important for obtaining proper performance.

VIII. Conclusion
We have investigated the relation between scene depth,

local image statistics and color constancy. The scene geom-
etry has been computed first to obtain image depth layers.
Then, image statistics are exploited (per depth) to select
the proper color constancy method. Our approach enables
the estimation of multiple illuminations by distinguishing
nearby light source from distant illuminations.

Experiments on various benchmark data sets show that
the proposed algorithm outperforms state-of-the-art sin-
gle color constancy algorithms with an improvement of
almost 50% of median angular error. When using a perfect
classifier (i.e, all of the test images are correctly classified
into stages), the performance of the proposed method
improves the median angular error as much as 52%. Using
Linear data set, leads to an improvement of 29% compared
to the state-of-the-art single color constancy algorithms.
This gain in performance can largely be explained by the
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TABLE VII
Summary of the Experiments. Note that: NIS refers to Natural Image Statistics.

Experiment Results Train set Test set
- Illumination Estimation from stages vs segmentation.
- Besides comparisons with several standard state-of-the-art algo-
rithms.

- Table II. - Stages dataset.
- Real-World dataset.

- Real-World dataset.

- Illumination Estimation using Segmentation (hard & soft) &
NIS.
- Weighted illumination Estimation per Depth

- Table IV. - a) Real-World dataset.
- b) Mondrian dataset.

- Real-World dataset.

- Illumination Estimation using Segmentation (hard & soft) & NIS
on Linear datasets.

- Table V & VI. - a) Real-World dataset.
- b) Color Checker dataset.
- c) Mondrian dataset.

- a) Real-World dataset.
- b) Color Checker dataset.

TABLE VI
Performance of color constancy algorithms applied on hard
and soft segmented images, trained over Linear Color-Checker
data set using cross-validation (cv) or using the independent
Mondrian data set. GE refers to Grey-Edge algorithm. EDC

and KD refer to Error Difference Confidence and Kernel
Density weighting schemes, respectively (see text).

Method Mean Median
Baseline: Grey World 6.4◦ 6.3◦

Baseline: White Patch 7.6◦ 5.7◦

Baseline: General Grey World 4.7◦ 3.5◦

Baseline: 1storder GE 5.3◦ 4.5◦

Baseline: 2ndorder GE 5.1◦ 4.4◦

Baseline: Global NIS 4.2◦ 3.1◦

Baseline: Exemplar-based 3.1◦ 2.3◦

NIS hard-cv Average 3.4◦ 2.6◦

NIS hard-cv-Bayesian 3.1◦ 2.4◦

NIS hard-cv-KD 3.1◦ 2.4◦

NIS hard-cv-HistSmooth 2.9◦ 2.4◦

NIS hard-cv-MOG 2.9◦ 2.2◦

NIS hard-cv-EDC 3.0◦ 2.1◦

NIS hard-Mondrian 3.8◦ 2.9◦

NIS soft-cv-Average 3.4◦ 2.5◦

NIS soft-cv-Bayesian 3.0◦ 2.4◦

NIS soft-cv-KD 3.0◦ 2.3◦

NIS soft-cv-HistSmooth 2.9◦ 2.3◦

NIS soft-cv-MOG 2.9◦ 2.2◦

NIS soft-cv-EDC 2.8◦ 2.2◦

NIS soft-Mondrian 3.6◦ 2.8◦

fact that most color constancy algorithms are specifically
suited for images with certain image statistics, like a high
(or low) signal-to-noise ratio. Further, it is shown that
extracting local geometry features is more efficient than
applying a global selection or combination algorithm. A
summary of the discussed methods is presented in Table
VII.

Acknowlodegments
This work was partly supported by the projects

TIN2009- 14501- C02- 02 and TIN2012- 39051 of the
Spanish Ministry of Science and Innovation.

References
[1] M. Ebner., “Color constancy.” in Wiley, 2007.
[2] G. Hordley., “Scene illuminant estimation:past, present, and

future.” Color Res. and App., vol. 31, no. 4, pp. 303–314, 2006.
[3] A. Gijsenij, T. Gevers, and J. van de Weijer, “Computational

color constancy: Overview and experiments.” IEEE Trans. on
Image Processing (TIP)., vol. 20, no. 9, pp. 2475 – 2489, 2011.

[4] A. Chakrabarti, K. Hirakawa, and T. Zickler., “Color constancy
beyond bags of pixels.” in CVPR, 2008.

[5] G. Finlayson, S. Hordley, and C. Lu., “On the removal of
shadows from images.” TPAMI, vol. 28, no. 1, pp. 59–68, 2006.

[6] J. van de Weijer, T. Gevers, and A. Gijsenij., “Edge-based color
constancy.” TIP, vol. 16, no. 9, pp. 2207–2214, 2007.

[7] S. Bianco, G.Ciocca, C. Cusano, and R. Schettini., “Improving
color constancy using indoor-outdoor image classification.” TIP,
vol. 17, no. 12, pp. 2381–92, 2008.

[8] A. Gijsenij and T. Gevers., “Color constancy using natural
image statistics.” in CVPR, 2007.

[9] R. Lu, A. Gijsenij, T. Gevers, K. van de Sande, J.M., Geuse-
broek, and D. Xu., “Color constancy using stage classification.”
in ICIP, 2009.

[10] R. Lu, A. Gijsenij, D. Xu, V. Nedovic, J.M., Geusebroek,
and T. Gevers., “Color constancy using 3d scene geometry.” in
ICCV, 2009.

[11] H. Jose and M. Drew., “Exemplar-based colour constancy and
multiple illumination.” PAMI., 2013.

[12] V. Nedovic, A. Smeulders, A. Redert, and J.-M. Geusebroek.,
“Depth information by stage classification.” in ICCV, 2007.

[13] R. Henry, S. Mahadev, S. Urquijo, and D. Chitwood., “Color
perception through atmospheric haze.” J. Opt. Soc. Am. A,
vol. 17, no. 5, pp. 831–835, 2000.

[14] A. Torralba and A. Oliva., “Depth estimation from image struc-
ture.” TPAMI, vol. 24, no. 9, pp. 1226–1238, 2002.

[15] A. R. Vladimir Nedovic, Arnold W. M. Smeulders and J.-
M. Geusebroek., “Stages as models of scene geometry.” IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), vol. 32, no. 9, pp. 1673–1687, 2010.

[16] J. Geusebroek and A. Smeulders., “A six-stimulus theory for
stochastic texture.” IJCV., vol. 62, no. 1-2, pp. 7–16, 2005.

[17] A. Gijsenij and T. Gevers, “Color constancy using natural image
statistics and scene semantics,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 4, pp. 687–698,
2011.

[18] E. Delage, H. Lee, and A. Y. Ng., “A dynamic bayesian network
model for autonomous 3d reconstruction from a single indoor
image.” in CVPR, 2006, pp. 2418–2428.

[19] E. Sudderth, A. Torralba, W. Freeman, and A. Willsky., “Depth
from familiar objects: A hierarchical model for 3d scenes.” in
CVPR, 2006., pp. 2410–2417.

[20] D. Hoiem, A. A. Efros, , and M. Hebert., “Geometric context
from a single image.” in ICCV, 2005, pp. 654–661.

[21] F. Ciurea and B. Funt., “A large image database for color
constancy research.” in CIC, 2003, pp. 160–164.

[22] A. Gijsenij, T. Gevers, and J. van de Weijer., “Computational
color constancy: Survery and experiments.” Trans. on Im. Proc.,
vol. 20, pp. 2475–2489, 2012.

[23] L. Shi and B. Funt.
[24] K. Barnard, L. Martin, B. V. Funt, and A. Coath., “A data set

for color research.” Color Research & Application., vol. 27, no. 3,
pp. 147–151, 2002.

[25] K. van de Sande, T. Gevers, and C. Snoek., “Evaluation of color
descriptors for object and scene recognition.” in CVPR, 2008.

[26] D. G. Lowe., “Distinctive image features from scale-invariant
keypoints.” IJCV, vol. 60, pp. 91–110, 2004.

[27] S. Lazebnik, C. Schmid, and J. Ponce., “Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene



14

categories.” in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 2, 2006, pp. 2169–2178.

[28] N. Elfiky, F. S. Khan, J. van de Weijer, and J. Gonzàlez., “Dis-
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