|
Records |
Links |
|
Author |
Andre Litvin; Kamal Nasrollahi; Sergio Escalera; Cagri Ozcinar; Thomas B. Moeslund; Gholamreza Anbarjafari |
|
|
Title |
A Novel Deep Network Architecture for Reconstructing RGB Facial Images from Thermal for Face Recognition |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
78 |
Issue |
18 |
Pages |
25259–25271 |
|
|
Keywords |
Fully convolutional networks; FusionNet; Thermal imaging; Face recognition |
|
|
Abstract |
This work proposes a fully convolutional network architecture for RGB face image generation from a given input thermal face image to be applied in face recognition scenarios. The proposed method is based on the FusionNet architecture and increases robustness against overfitting using dropout after bridge connections, randomised leaky ReLUs (RReLUs), and orthogonal regularization. Furthermore, we propose to use a decoding block with resize convolution instead of transposed convolution to improve final RGB face image generation. To validate our proposed network architecture, we train a face classifier and compare its face recognition rate on the reconstructed RGB images from the proposed architecture, to those when reconstructing images with the original FusionNet, as well as when using the original RGB images. As a result, we are introducing a new architecture which leads to a more accurate network. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no menciona |
Approved |
no |
|
|
Call Number |
Admin @ si @ LNE2019 |
Serial |
3318 |
|
Permanent link to this record |
|
|
|
|
Author |
Ikechukwu Ofodile; Ahmed Helmi; Albert Clapes; Egils Avots; Kerttu Maria Peensoo; Sandhra Mirella Valdma; Andreas Valdmann; Heli Valtna Lukner; Sergey Omelkov; Sergio Escalera; Cagri Ozcinar; Gholamreza Anbarjafari |
|
|
Title |
Action recognition using single-pixel time-of-flight detection |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Entropy |
Abbreviated Journal |
ENTROPY |
|
|
Volume |
21 |
Issue |
4 |
Pages |
414 |
|
|
Keywords |
single pixel single photon image acquisition; time-of-flight; action recognition |
|
|
Abstract |
Action recognition is a challenging task that plays an important role in many robotic systems, which highly depend on visual input feeds. However, due to privacy concerns, it is important to find a method which can recognise actions without using visual feed. In this paper, we propose a concept for detecting actions while preserving the test subject’s privacy. Our proposed method relies only on recording the temporal evolution of light pulses scattered back from the scene.
Such data trace to record one action contains a sequence of one-dimensional arrays of voltage values acquired by a single-pixel detector at 1 GHz repetition rate. Information about both the distance to the object and its shape are embedded in the traces. We apply machine learning in the form of recurrent neural networks for data analysis and demonstrate successful action recognition. The experimental results show that our proposed method could achieve on average 96.47% accuracy on the actions walking forward, walking backwards, sitting down, standing up and waving hand, using recurrent
neural network. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ OHC2019 |
Serial |
3319 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Jordi Gonzalez; Hugo Jair Escalante; Xavier Baro; Isabelle Guyon |
|
|
Title |
Looking at People Special Issue |
Type |
Journal Article |
|
Year |
2018 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
126 |
Issue |
2-4 |
Pages |
141-143 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; ISE; 600.119 |
Approved |
no |
|
|
Call Number |
Admin @ si @ EGJ2018 |
Serial |
3093 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Angel Bautista; Oriol Pujol; Fernando De la Torre; Sergio Escalera |
|
|
Title |
Error-Correcting Factorization |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
40 |
Issue |
|
Pages |
2388-2401 |
|
|
Keywords |
|
|
|
Abstract |
Error Correcting Output Codes (ECOC) is a successful technique in multi-class classification, which is a core problem in Pattern Recognition and Machine Learning. A major advantage of ECOC over other methods is that the multi- class problem is decoupled into a set of binary problems that are solved independently. However, literature defines a general error-correcting capability for ECOCs without analyzing how it distributes among classes, hindering a deeper analysis of pair-wise error-correction. To address these limitations this paper proposes an Error-Correcting Factorization (ECF) method, our contribution is three fold: (I) We propose a novel representation of the error-correction capability, called the design matrix, that enables us to build an ECOC on the basis of allocating correction to pairs of classes. (II) We derive the optimal code length of an ECOC using rank properties of the design matrix. (III) ECF is formulated as a discrete optimization problem, and a relaxed solution is found using an efficient constrained block coordinate descent approach. (IV) Enabled by the flexibility introduced with the design matrix we propose to allocate the error-correction on classes that are prone to confusion. Experimental results in several databases show that when allocating the error-correction to confusable classes ECF outperforms state-of-the-art approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no menciona |
Approved |
no |
|
|
Call Number |
Admin @ si @ BPT2018 |
Serial |
3015 |
|
Permanent link to this record |
|
|
|
|
Author |
Huamin Ren; Nattiya Kanhabua; Andreas Mogelmose; Weifeng Liu; Kaustubh Kulkarni; Sergio Escalera; Xavier Baro; Thomas B. Moeslund |
|
|
Title |
Back-dropout Transfer Learning for Action Recognition |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IET Computer Vision |
Abbreviated Journal |
IETCV |
|
|
Volume |
12 |
Issue |
4 |
Pages |
484-491 |
|
|
Keywords |
Learning (artificial intelligence); Pattern Recognition |
|
|
Abstract |
Transfer learning aims at adapting a model learned from source dataset to target dataset. It is a beneficial approach especially when annotating on the target dataset is expensive or infeasible. Transfer learning has demonstrated its powerful learning capabilities in various vision tasks. Despite transfer learning being a promising approach, it is still an open question how to adapt the model learned from the source dataset to the target dataset. One big challenge is to prevent the impact of category bias on classification performance. Dataset bias exists when two images from the same category, but from different datasets, are not classified as the same. To address this problem, a transfer learning algorithm has been proposed, called negative back-dropout transfer learning (NB-TL), which utilizes images that have been misclassified and further performs back-dropout strategy on them to penalize errors. Experimental results demonstrate the effectiveness of the proposed algorithm. In particular, the authors evaluate the performance of the proposed NB-TL algorithm on UCF 101 action recognition dataset, achieving 88.9% recognition rate. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKM2018 |
Serial |
3071 |
|
Permanent link to this record |