|
Records |
Links |
|
Author |
Lei Li; Fuping Wu; Sihan Wang; Xinzhe Luo; Carlos Martin-Isla; Shuwei Zhai; Jianpeng Zhang; Yanfei Liu; Zhen Zhang; Markus J. Ankenbrand; Haochuan Jiang; Xiaoran Zhang; Linhong Wang; Tewodros Weldebirhan Arega; Elif Altunok; Zhou Zhao; Feiyan Li; Jun Ma; Xiaoping Yang; Elodie Puybareau; Ilkay Oksuz; Stephanie Bricq; Weisheng Li;Kumaradevan Punithakumar; Sotirios A. Tsaftaris; Laura M. Schreiber; Mingjing Yang; Guocai Liu; Yong Xia; Guotai Wang; Sergio Escalera; Xiahai Zhuag |
|
|
Title |
MyoPS: A benchmark of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Medical Image Analysis |
Abbreviated Journal |
MIA |
|
|
Volume |
87 |
Issue |
|
Pages |
102808 |
|
|
Keywords |
|
|
|
Abstract |
Assessment of myocardial viability is essential in diagnosis and treatment management of patients suffering from myocardial infarction, and classification of pathology on the myocardium is the key to this assessment. This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS) combining three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020. Note that MyoPS refers to both myocardial pathology segmentation and the challenge in this paper. The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation. In this article, we provide details of the challenge, survey the works from fifteen participants and interpret their methods according to five aspects, i.e., preprocessing, data augmentation, learning strategy, model architecture and post-processing. In addition, we analyze the results with respect to different factors, in order to examine the key obstacles and explore the potential of solutions, as well as to provide a benchmark for future research. The average Dice scores of submitted algorithms were and for myocardial scars and edema, respectively. We conclude that while promising results have been reported, the research is still in the early stage, and more in-depth exploration is needed before a successful application to the clinics. MyoPS data and evaluation tool continue to be publicly available upon registration via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ LWW2023a |
Serial |
3878 |
|
Permanent link to this record |
|
|
|
|
Author |
Razieh Rastgoo; Kourosh Kiani; Sergio Escalera |
|
|
Title |
ZS-GR: zero-shot gesture recognition from RGB-D videos |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
82 |
Issue |
|
Pages |
43781-43796 |
|
|
Keywords |
|
|
|
Abstract |
Gesture Recognition (GR) is a challenging research area in computer vision. To tackle the annotation bottleneck in GR, we formulate the problem of Zero-Shot Gesture Recognition (ZS-GR) and propose a two-stream model from two input modalities: RGB and Depth videos. To benefit from the vision Transformer capabilities, we use two vision Transformer models, for human detection and visual features representation. We configure a transformer encoder-decoder architecture, as a fast and accurate human detection model, to overcome the challenges of the current human detection models. Considering the human keypoints, the detected human body is segmented into nine parts. A spatio-temporal representation from human body is obtained using a vision Transformer and a LSTM network. A semantic space maps the visual features to the lingual embedding of the class labels via a Bidirectional Encoder Representations from Transformers (BERT) model. We evaluated the proposed model on five datasets, Montalbano II, MSR Daily Activity 3D, CAD-60, NTU-60, and isoGD obtaining state-of-the-art results compared to state-of-the-art ZS-GR models as well as the Zero-Shot Action Recognition (ZS-AR). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKE2023a |
Serial |
3879 |
|
Permanent link to this record |
|
|
|
|
Author |
Carlos Martin-Isla; Victor M Campello; Cristian Izquierdo; Kaisar Kushibar; Carla Sendra Balcells; Polyxeni Gkontra; Alireza Sojoudi; Mitchell J Fulton; Tewodros Weldebirhan Arega; Kumaradevan Punithakumar; Lei Li; Xiaowu Sun; Yasmina Al Khalil; Di Liu; Sana Jabbar; Sandro Queiros; Francesco Galati; Moona Mazher; Zheyao Gao; Marcel Beetz; Lennart Tautz; Christoforos Galazis; Marta Varela; Markus Hullebrand; Vicente Grau; Xiahai Zhuang; Domenec Puig; Maria A Zuluaga; Hassan Mohy Ud Din; Dimitris Metaxas; Marcel Breeuwer; Rob J van der Geest; Michelle Noga; Stephanie Bricq; Mark E Rentschler; Andrea Guala; Steffen E Petersen; Sergio Escalera; Jose F Rodriguez Palomares; Karim Lekadir |
|
|
Title |
Deep Learning Segmentation of the Right Ventricle in Cardiac MRI: The M&ms Challenge |
Type |
Journal Article |
|
Year |
2023 |
Publication |
IEEE Journal of Biomedical and Health Informatics |
Abbreviated Journal |
JBHI |
|
|
Volume |
27 |
Issue |
7 |
Pages |
3302-3313 |
|
|
Keywords |
|
|
|
Abstract |
In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ MCI2023 |
Serial |
3880 |
|
Permanent link to this record |
|
|
|
|
Author |
Razieh Rastgoo; Kourosh Kiani; Sergio Escalera |
|
|
Title |
A deep co-attentive hand-based video question answering framework using multi-view skeleton |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
82 |
Issue |
|
Pages |
1401–1429 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we present a novel hand –based Video Question Answering framework, entitled Multi-View Video Question Answering (MV-VQA), employing the Single Shot Detector (SSD), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Bidirectional Encoder Representations from Transformers (BERT), and Co-Attention mechanism with RGB videos as the inputs. Our model includes three main blocks: vision, language, and attention. In the vision block, we employ a novel representation to obtain some efficient multiview features from the hand object using the combination of five 3DCNNs and one LSTM network. To obtain the question embedding, we use the BERT model in language block. Finally, we employ a co-attention mechanism on vision and language features to recognize the final answer. For the first time, we propose such a hand-based Video-QA framework including the multi-view hand skeleton features combined with the question embedding and co-attention mechanism. Our framework is capable of processing the arbitrary numbers of questions in the dataset annotations. There are different application domains for this framework. Here, as an application domain, we applied our framework to dynamic hand gesture recognition for the first time. Since the main object in dynamic hand gesture recognition is the human hand, we performed a step-by-step analysis of the hand detection and multi-view hand skeleton impact on the model performance. Evaluation results on five datasets, including two datasets in VideoQA, two datasets in dynamic hand gesture, and one dataset in hand action recognition show that MV-VQA outperforms state-of-the-art alternatives. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKE2023b |
Serial |
3881 |
|
Permanent link to this record |
|
|
|
|
Author |
Zahra Raisi-Estabragh; Carlos Martin-Isla; Louise Nissen; Liliana Szabo; Victor M. Campello; Sergio Escalera; Simon Winther; Morten Bottcher; Karim Lekadir; and Steffen E. Petersen |
|
|
Title |
Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Frontiers in Cardiovascular Medicine |
Abbreviated Journal |
FCM |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ RMN2023 |
Serial |
3937 |
|
Permanent link to this record |