toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Mark Philip Philipsen; Jacob Velling Dueholm; Anders Jorgensen; Sergio Escalera; Thomas B. Moeslund edit  doi
openurl 
  Title Organ Segmentation in Poultry Viscera Using RGB-D Type Journal Article
  Year (down) 2018 Publication Sensors Abbreviated Journal SENS  
  Volume 18 Issue 1 Pages 117  
  Keywords semantic segmentation; RGB-D; random forest; conditional random field; 2D; 3D; CNN  
  Abstract We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ PVJ2018 Serial 3072  
Permanent link to this record
 

 
Author Mohamed Ilyes Lakhal; Hakan Çevikalp; Sergio Escalera; Ferda Ofli edit  doi
openurl 
  Title Recurrent Neural Networks for Remote Sensing Image Classification Type Journal Article
  Year (down) 2018 Publication IET Computer Vision Abbreviated Journal IETCV  
  Volume 12 Issue 7 Pages 1040 - 1045  
  Keywords  
  Abstract Automatically classifying an image has been a central problem in computer vision for decades. A plethora of models has been proposed, from handcrafted feature solutions to more sophisticated approaches such as deep learning. The authors address the problem of remote sensing image classification, which is an important problem to many real world applications. They introduce a novel deep recurrent architecture that incorporates high-level feature descriptors to tackle this challenging problem. Their solution is based on the general encoder–decoder framework. To the best of the authors’ knowledge, this is the first study to use a recurrent network structure on this task. The experimental results show that the proposed framework outperforms the previous works in the three datasets widely used in the literature. They have achieved a state-of-the-art accuracy rate of 97.29% on the UC Merced dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ LÇE2018 Serial 3119  
Permanent link to this record
 

 
Author Pau Rodriguez; Miguel Angel Bautista; Sergio Escalera; Jordi Gonzalez edit   pdf
url  doi
openurl 
  Title Beyond Oneshot Encoding: lower dimensional target embedding Type Journal Article
  Year (down) 2018 Publication Image and Vision Computing Abbreviated Journal IMAVIS  
  Volume 75 Issue Pages 21-31  
  Keywords Error correcting output codes; Output embeddings; Deep learning; Computer vision  
  Abstract Target encoding plays a central role when learning Convolutional Neural Networks. In this realm, one-hot encoding is the most prevalent strategy due to its simplicity. However, this so widespread encoding schema assumes a flat label space, thus ignoring rich relationships existing among labels that can be exploited during training. In large-scale datasets, data does not span the full label space, but instead lies in a low-dimensional output manifold. Following this observation, we embed the targets into a low-dimensional space, drastically improving convergence speed while preserving accuracy. Our contribution is two fold: (i) We show that random projections of the label space are a valid tool to find such lower dimensional embeddings, boosting dramatically convergence rates at zero computational cost; and (ii) we propose a normalized eigenrepresentation of the class manifold that encodes the targets with minimal information loss, improving the accuracy of random projections encoding while enjoying the same convergence rates. Experiments on CIFAR-100, CUB200-2011, Imagenet, and MIT Places demonstrate that the proposed approach drastically improves convergence speed while reaching very competitive accuracy rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; HuPBA; 600.098; 602.133; 602.121; 600.119;MILAB Approved no  
  Call Number Admin @ si @ RBE2018 Serial 3120  
Permanent link to this record
 

 
Author Jianzhy Guo; Zhen Lei; Jun Wan; Egils Avots; Noushin Hajarolasvadi; Boris Knyazev; Artem Kuharenko; Julio C. S. Jacques Junior; Xavier Baro; Hasan Demirel; Sergio Escalera; Juri Allik; Gholamreza Anbarjafari edit  doi
openurl 
  Title Dominant and Complementary Emotion Recognition from Still Images of Faces Type Journal Article
  Year (down) 2018 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 6 Issue Pages 26391 - 26403  
  Keywords  
  Abstract Emotion recognition has a key role in affective computing. Recently, fine-grained emotion analysis, such as compound facial expression of emotions, has attracted high interest of researchers working on affective computing. A compound facial emotion includes dominant and complementary emotions (e.g., happily-disgusted and sadly-fearful), which is more detailed than the seven classical facial emotions (e.g., happy, disgust, and so on). Current studies on compound emotions are limited to use data sets with limited number of categories and unbalanced data distributions, with labels obtained automatically by machine learning-based algorithms which could lead to inaccuracies. To address these problems, we released the iCV-MEFED data set, which includes 50 classes of compound emotions and labels assessed by psychologists. The task is challenging due to high similarities of compound facial emotions from different categories. In addition, we have organized a challenge based on the proposed iCV-MEFED data set, held at FG workshop 2017. In this paper, we analyze the top three winner methods and perform further detailed experiments on the proposed data set. Experiments indicate that pairs of compound emotion (e.g., surprisingly-happy vs happily-surprised) are more difficult to be recognized if compared with the seven basic emotions. However, we hope the proposed data set can help to pave the way for further research on compound facial emotion recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MV;OR;MILAB Approved no  
  Call Number Admin @ si @ GLW2018 Serial 3122  
Permanent link to this record
 

 
Author Pichao Wang; Wanqing Li; Philip Ogunbona; Jun Wan; Sergio Escalera edit   pdf
url  openurl
  Title RGB-D-based Human Motion Recognition with Deep Learning: A Survey Type Journal Article
  Year (down) 2018 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 171 Issue Pages 118-139  
  Keywords Human motion recognition; RGB-D data; Deep learning; Survey  
  Abstract Human motion recognition is one of the most important branches of human-centered research activities. In recent years, motion recognition based on RGB-D data has attracted much attention. Along with the development in artificial intelligence, deep learning techniques have gained remarkable success in computer vision. In particular, convolutional neural networks (CNN) have achieved great success for image-based tasks, and recurrent neural networks (RNN) are renowned for sequence-based problems. Specifically, deep learning methods based on the CNN and RNN architectures have been adopted for motion recognition using RGB-D data. In this paper, a detailed overview of recent advances in RGB-D-based motion recognition is presented. The reviewed methods are broadly categorized into four groups, depending on the modality adopted for recognition: RGB-based, depth-based, skeleton-based and RGB+D-based. As a survey focused on the application of deep learning to RGB-D-based motion recognition, we explicitly discuss the advantages and limitations of existing techniques. Particularly, we highlighted the methods of encoding spatial-temporal-structural information inherent in video sequence, and discuss potential directions for future research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ WLO2018 Serial 3123  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: