|
Records |
Links |
|
Author |
Frederic Sampedro; Anna Domenech; Sergio Escalera |
|
|
Title |
Static and dynamic computational cancer spread quantification in whole body FDG-PET/CT scans |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Journal of Medical Imaging and Health Informatics |
Abbreviated Journal |
JMIHI |
|
|
Volume |
4 |
Issue |
6 |
Pages |
825-831 |
|
|
Keywords |
CANCER SPREAD; COMPUTER AIDED DIAGNOSIS; MEDICAL IMAGING; TUMOR QUANTIFICATION |
|
|
Abstract |
In this work we address the computational cancer spread quantification scenario in whole body FDG-PET/CT scans. At the static level, this setting can be modeled as a clustering problem on the set of 3D connected components of the whole body PET tumoral segmentation mask carried out by nuclear medicine physicians. At the dynamic level, and ad-hoc algorithm is proposed in order to quantify the cancer spread time evolution which, when combined with other existing indicators, gives rise to the metabolic tumor volume-aggressiveness-spread time evolution chart, a novel tool that we claim that would prove useful in nuclear medicine and oncological clinical or research scenarios. Good performance results of the proposed methodologies both at the clinical and technological level are shown using a dataset of 48 segmented whole body FDG-PET/CT scans. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ SDE2014b |
Serial |
2548 |
|
Permanent link to this record |
|
|
|
|
Author |
Frederic Sampedro; Sergio Escalera; Anna Puig |
|
|
Title |
Iterative Multiclass Multiscale Stacked Sequential Learning: definition and application to medical volume segmentation |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
46 |
Issue |
|
Pages |
1-10 |
|
|
Keywords |
Machine learning; Sequential learning; Multi-class problems; Contextual learning; Medical volume segmentation |
|
|
Abstract |
In this work we present the iterative multi-class multi-scale stacked sequential learning framework (IMMSSL), a novel learning scheme that is particularly suited for medical volume segmentation applications. This model exploits the inherent voxel contextual information of the structures of interest in order to improve its segmentation performance results. Without any feature set or learning algorithm prior assumption, the proposed scheme directly seeks to learn the contextual properties of a region from the predicted classifications of previous classifiers within an iterative scheme. Performance results regarding segmentation accuracy in three two-class and multi-class medical volume datasets show a significant improvement with respect to state of the art alternatives. Due to its easiness of implementation and its independence of feature space and learning algorithm, the presented machine learning framework could be taken into consideration as a first choice in complex volume segmentation scenarios. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ SEP2014 |
Serial |
2550 |
|
Permanent link to this record |
|
|
|
|
Author |
Frederic Sampedro; Sergio Escalera; Anna Domenech; Ignasi Carrio |
|
|
Title |
A computational framework for cancer response assessment based on oncological PET-CT scans |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Computers in Biology and Medicine |
Abbreviated Journal |
CBM |
|
|
Volume |
55 |
Issue |
|
Pages |
92–99 |
|
|
Keywords |
Computer aided diagnosis; Nuclear medicine; Machine learning; Image processing; Quantitative analysis |
|
|
Abstract |
In this work we present a comprehensive computational framework to help in the clinical assessment of cancer response from a pair of time consecutive oncological PET-CT scans. In this scenario, the design and implementation of a supervised machine learning system to predict and quantify cancer progression or response conditions by introducing a novel feature set that models the underlying clinical context is described. Performance results in 100 clinical cases (corresponding to 200 whole body PET-CT scans) in comparing expert-based visual analysis and classifier decision making show up to 70% accuracy within a completely automatic pipeline and 90% accuracy when providing the system with expert-guided PET tumor segmentation masks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ SED2014 |
Serial |
2606 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera |
|
|
Title |
Multi-Modal Human Behaviour Analysis from Visual Data Sources |
Type |
Journal |
|
Year |
2013 |
Publication |
ERCIM News journal |
Abbreviated Journal |
ERCIM |
|
|
Volume |
95 |
Issue |
|
Pages |
21-22 |
|
|
Keywords |
|
|
|
Abstract |
The Human Pose Recovery and Behaviour Analysis group (HuPBA), University of Barcelona, is developing a line of research on multi-modal analysis of humans in visual data. The novel technology is being applied in several scenarios with high social impact, including sign language recognition, assisted technology and supported diagnosis for the elderly and people with mental/physical disabilities, fitness conditioning, and Human Computer Interaction. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0926-4981 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ Esc2013 |
Serial |
2361 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Reyes; Albert Clapes; Jose Ramirez; Juan R Revilla; Sergio Escalera |
|
|
Title |
Automatic Digital Biometry Analysis based on Depth Maps |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Computers in Industry |
Abbreviated Journal |
COMPUTIND |
|
|
Volume |
64 |
Issue |
9 |
Pages |
1316-1325 |
|
|
Keywords |
Multi-modal data fusion; Depth maps; Posture analysis; Anthropometric data; Musculo-skeletal disorders; Gesture analysis |
|
|
Abstract |
World Health Organization estimates that 80% of the world population is affected by back-related disorders during his life. Current practices to analyze musculo-skeletal disorders (MSDs) are expensive, subjective, and invasive. In this work, we propose a tool for static body posture analysis and dynamic range of movement estimation of the skeleton joints based on 3D anthropometric information from multi-modal data. Given a set of keypoints, RGB and depth data are aligned, depth surface is reconstructed, keypoints are matched, and accurate measurements about posture and spinal curvature are computed. Given a set of joints, range of movement measurements is also obtained. Moreover, gesture recognition based on joint movements is performed to look for the correctness in the development of physical exercises. The system shows high precision and reliable measurements, being useful for posture reeducation purposes to prevent MSDs, as well as tracking the posture evolution of patients in rehabilitation treatments. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ RCR2013 |
Serial |
2252 |
|
Permanent link to this record |