toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Swathikiran Sudhakaran; Sergio Escalera;Oswald Lanz edit   pdf
url  doi
openurl 
  Title Learning to Recognize Actions on Objects in Egocentric Video with Attention Dictionaries Type Journal Article
  Year (down) 2021 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume Issue Pages  
  Keywords  
  Abstract We present EgoACO, a deep neural architecture for video action recognition that learns to pool action-context-object descriptors from frame level features by leveraging the verb-noun structure of action labels in egocentric video datasets. The core component of EgoACO is class activation pooling (CAP), a differentiable pooling operation that combines ideas from bilinear pooling for fine-grained recognition and from feature learning for discriminative localization. CAP uses self-attention with a dictionary of learnable weights to pool from the most relevant feature regions. Through CAP, EgoACO learns to decode object and scene context descriptors from video frame features. For temporal modeling in EgoACO, we design a recurrent version of class activation pooling termed Long Short-Term Attention (LSTA). LSTA extends convolutional gated LSTM with built-in spatial attention and a re-designed output gate. Action, object and context descriptors are fused by a multi-head prediction that accounts for the inter-dependencies between noun-verb-action structured labels in egocentric video datasets. EgoACO features built-in visual explanations, helping learning and interpretation. Results on the two largest egocentric action recognition datasets currently available, EPIC-KITCHENS and EGTEA, show that by explicitly decoding action-context-object descriptors, EgoACO achieves state-of-the-art recognition performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ SEL2021 Serial 3656  
Permanent link to this record
 

 
Author Victor M. Campello; Polyxeni Gkontra; Cristian Izquierdo; Carlos Martin-Isla; Alireza Sojoudi; Peter M. Full; Klaus Maier-Hein; Yao Zhang; Zhiqiang He; Jun Ma; Mario Parreno; Alberto Albiol; Fanwei Kong; Shawn C. Shadden; Jorge Corral Acero; Vaanathi Sundaresan; Mina Saber; Mustafa Elattar; Hongwei Li; Bjoern Menze; Firas Khader; Christoph Haarburger; Cian M. Scannell; Mitko Veta; Adam Carscadden; Kumaradevan Punithakumar; Xiao Liu; Sotirios A. Tsaftaris; Xiaoqiong Huang; Xin Yang; Lei Li; Xiahai Zhuang; David Vilades; Martin L. Descalzo; Andrea Guala; Lucia La Mura; Matthias G. Friedrich; Ria Garg; Julie Lebel; Filipe Henriques; Mahir Karakas; Ersin Cavus; Steffen E. Petersen; Sergio Escalera; Santi Segui; Jose F. Rodriguez Palomares; Karim Lekadir edit  url
doi  openurl
  Title Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge Type Journal Article
  Year (down) 2021 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume 40 Issue 12 Pages 3543-3554  
  Keywords  
  Abstract The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (M&Ms) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ CGI2021 Serial 3653  
Permanent link to this record
 

 
Author Zhengying Liu; Adrien Pavao; Zhen Xu; Sergio Escalera; Fabio Ferreira; Isabelle Guyon; Sirui Hong; Frank Hutter; Rongrong Ji; Julio C. S. Jacques Junior; Ge Li; Marius Lindauer; Zhipeng Luo; Meysam Madadi; Thomas Nierhoff; Kangning Niu; Chunguang Pan; Danny Stoll; Sebastien Treguer; Jin Wang; Peng Wang; Chenglin Wu; Youcheng Xiong; Arber Zela; Yang Zhang edit  url
doi  openurl
  Title Winning Solutions and Post-Challenge Analyses of the ChaLearn AutoDL Challenge 2019 Type Journal Article
  Year (down) 2021 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 43 Issue 9 Pages 3108 - 3125  
  Keywords  
  Abstract This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a “meta-learner”, “data ingestor”, “model selector”, “model/learner”, and “evaluator”. This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free “AutoDL self-service.”  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ LPX2021 Serial 3587  
Permanent link to this record
 

 
Author Ajian Liu; Xuan Li; Jun Wan; Yanyan Liang; Sergio Escalera; Hugo Jair Escalante; Meysam Madadi; Yi Jin; Zhuoyuan Wu; Xiaogang Yu; Zichang Tan; Qi Yuan; Ruikun Yang; Benjia Zhou; Guodong Guo; Stan Z. Li edit   pdf
url  openurl
  Title Cross-ethnicity Face Anti-spoofing Recognition Challenge: A Review Type Journal Article
  Year (down) 2020 Publication IET Biometrics Abbreviated Journal BIO  
  Volume 10 Issue 1 Pages 24-43  
  Keywords  
  Abstract Face anti-spoofing is critical to prevent face recognition systems from a security breach. The biometrics community has %possessed achieved impressive progress recently due the excellent performance of deep neural networks and the availability of large datasets. Although ethnic bias has been verified to severely affect the performance of face recognition systems, it still remains an open research problem in face anti-spoofing. Recently, a multi-ethnic face anti-spoofing dataset, CASIA-SURF CeFA, has been released with the goal of measuring the ethnic bias. It is the largest up to date cross-ethnicity face anti-spoofing dataset covering 3 ethnicities, 3 modalities, 1,607 subjects, 2D plus 3D attack types, and the first dataset including explicit ethnic labels among the recently released datasets for face anti-spoofing. We organized the Chalearn Face Anti-spoofing Attack Detection Challenge which consists of single-modal (e.g., RGB) and multi-modal (e.g., RGB, Depth, Infrared (IR)) tracks around this novel resource to boost research aiming to alleviate the ethnic bias. Both tracks have attracted 340 teams in the development stage, and finally 11 and 8 teams have submitted their codes in the single-modal and multi-modal face anti-spoofing recognition challenges, respectively. All the results were verified and re-ran by the organizing team, and the results were used for the final ranking. This paper presents an overview of the challenge, including its design, evaluation protocol and a summary of results. We analyze the top ranked solutions and draw conclusions derived from the competition. In addition we outline future work directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ LLW2020b Serial 3523  
Permanent link to this record
 

 
Author Meysam Madadi; Hugo Bertiche; Sergio Escalera edit   pdf
url  openurl
  Title SMPLR: Deep learning based SMPL reverse for 3D human pose and shape recovery Type Journal Article
  Year (down) 2020 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 106 Issue Pages 107472  
  Keywords Deep learning; 3D Human pose; Body shape; SMPL; Denoising autoencoder; Volumetric stack hourglass  
  Abstract In this paper we propose to embed SMPL within a deep-based model to accurately estimate 3D pose and shape from a still RGB image. We use CNN-based 3D joint predictions as an intermediate representation to regress SMPL pose and shape parameters. Later, 3D joints are reconstructed again in the SMPL output. This module can be seen as an autoencoder where the encoder is a deep neural network and the decoder is SMPL model. We refer to this as SMPL reverse (SMPLR). By implementing SMPLR as an encoder-decoder we avoid the need of complex constraints on pose and shape. Furthermore, given that in-the-wild datasets usually lack accurate 3D annotations, it is desirable to lift 2D joints to 3D without pairing 3D annotations with RGB images. Therefore, we also propose a denoising autoencoder (DAE) module between CNN and SMPLR, able to lift 2D joints to 3D and partially recover from structured error. We evaluate our method on SURREAL and Human3.6M datasets, showing improvement over SMPL-based state-of-the-art alternatives by about 4 and 12 mm, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ MBE2020 Serial 3439  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: