|
Records |
Links |
|
Author |
Mikkel Thogersen; Sergio Escalera; Jordi Gonzalez; Thomas B. Moeslund |
|
|
Title |
Segmentation of RGB-D Indoor scenes by Stacking Random Forests and Conditional Random Fields |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
80 |
Issue |
|
Pages |
208–215 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a technique for RGB-D scene segmentation using Multi-class
Multi-scale Stacked Sequential Learning (MMSSL) paradigm. Following recent trends in state-of-the-art, a base classifier uses an initial SLIC segmentation to obtain superpixels which provide a diminution of data while retaining object boundaries. A series of color and depth features are extracted from the superpixels, and are used in a Conditional Random Field (CRF) to predict superpixel labels. Furthermore, a Random Forest (RF) classifier using random offset features is also used as an input to the CRF, acting as an initial prediction. As a stacked classifier, another Random Forest is used acting on a spatial multi-scale decomposition of the CRF confidence map to correct the erroneous labels assigned by the previous classifier. The model is tested on the popular NYU-v2 dataset.
The approach shows that simple multi-modal features with the power of the MMSSL
paradigm can achieve better performance than state of the art results on the same dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; ISE;MILAB; 600.098; 600.119 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TEG2016 |
Serial |
2843 |
|
Permanent link to this record |
|
|
|
|
Author |
Razieh Rastgoo; Kourosh Kiani; Sergio Escalera |
|
|
Title |
Hand pose aware multimodal isolated sign language recognition |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
80 |
Issue |
|
Pages |
127–163 |
|
|
Keywords |
|
|
|
Abstract |
Isolated hand sign language recognition from video is a challenging research area in computer vision. Some of the most important challenges in this area include dealing with hand occlusion, fast hand movement, illumination changes, or background complexity. While most of the state-of-the-art results in the field have been achieved using deep learning-based models, the previous challenges are not completely solved. In this paper, we propose a hand pose aware model for isolated hand sign language recognition using deep learning approaches from two input modalities, RGB and depth videos. Four spatial feature types: pixel-level, flow, deep hand, and hand pose features, fused from both visual modalities, are input to LSTM for temporal sign recognition. While we use Optical Flow (OF) for flow information in RGB video inputs, Scene Flow (SF) is used for depth video inputs. By including hand pose features, we show a consistent performance improvement of the sign language recognition model. To the best of our knowledge, this is the first time that this discriminant spatiotemporal features, benefiting from the hand pose estimation features and multi-modal inputs, are fused for isolated hand sign language recognition. We perform a step-by-step analysis of the impact in terms of recognition performance of the hand pose features, different combinations of the spatial features, and different recurrent models, especially LSTM and GRU. Results on four public datasets confirm that the proposed model outperforms the current state-of-the-art models on Montalbano II, MSR Daily Activity 3D, and CAD-60 datasets with a relative accuracy improvement of 1.64%, 6.5%, and 7.6%. Furthermore, our model obtains a competitive results on isoGD dataset with only 0.22% margin lower than the current state-of-the-art model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no menciona |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKE2020 |
Serial |
3524 |
|
Permanent link to this record |
|
|
|
|
Author |
Jun Wan; Sergio Escalera; Francisco Perales; Josef Kittler |
|
|
Title |
Articulated Motion and Deformable Objects |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
79 |
Issue |
|
Pages |
55-64 |
|
|
Keywords |
|
|
|
Abstract |
This guest editorial introduces the twenty two papers accepted for this Special Issue on Articulated Motion and Deformable Objects (AMDO). They are grouped into four main categories within the field of AMDO: human motion analysis (action/gesture), human pose estimation, deformable shape segmentation, and face analysis. For each of the four topics, a survey of the recent developments in the field is presented. The accepted papers are briefly introduced in the context of this survey. They contribute novel methods, algorithms with improved performance as measured on benchmarking datasets, as well as two new datasets for hand action detection and human posture analysis. The special issue should be of high relevance to the reader interested in AMDO recognition and promote future research directions in the field. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ WEP2018 |
Serial |
3126 |
|
Permanent link to this record |
|
|
|
|
Author |
Julio C. S. Jacques Junior; Xavier Baro; Sergio Escalera |
|
|
Title |
Exploiting feature representations through similarity learning, post-ranking and ranking aggregation for person re-identification |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Image and Vision Computing |
Abbreviated Journal |
IMAVIS |
|
|
Volume |
79 |
Issue |
|
Pages |
76-85 |
|
|
Keywords |
|
|
|
Abstract |
Person re-identification has received special attention by the human analysis community in the last few years. To address the challenges in this field, many researchers have proposed different strategies, which basically exploit either cross-view invariant features or cross-view robust metrics. In this work, we propose to exploit a post-ranking approach and combine different feature representations through ranking aggregation. Spatial information, which potentially benefits the person matching, is represented using a 2D body model, from which color and texture information are extracted and combined. We also consider background/foreground information, automatically extracted via Deep Decompositional Network, and the usage of Convolutional Neural Network (CNN) features. To describe the matching between images we use the polynomial feature map, also taking into account local and global information. The Discriminant Context Information Analysis based post-ranking approach is used to improve initial ranking lists. Finally, the Stuart ranking aggregation method is employed to combine complementary ranking lists obtained from different feature representations. Experimental results demonstrated that we improve the state-of-the-art on VIPeR and PRID450s datasets, achieving 67.21% and 75.64% on top-1 rank recognition rate, respectively, as well as obtaining competitive results on CUHK01 dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; 602.143 |
Approved |
no |
|
|
Call Number |
Admin @ si @ JBE2018 |
Serial |
3138 |
|
Permanent link to this record |
|
|
|
|
Author |
Meysam Madadi; Sergio Escalera; Alex Carruesco Llorens; Carlos Andujar; Xavier Baro; Jordi Gonzalez |
|
|
Title |
Top-down model fitting for hand pose recovery in sequences of depth images |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Image and Vision Computing |
Abbreviated Journal |
IMAVIS |
|
|
Volume |
79 |
Issue |
|
Pages |
63-75 |
|
|
Keywords |
|
|
|
Abstract |
State-of-the-art approaches on hand pose estimation from depth images have reported promising results under quite controlled considerations. In this paper we propose a two-step pipeline for recovering the hand pose from a sequence of depth images. The pipeline has been designed to deal with images taken from any viewpoint and exhibiting a high degree of finger occlusion. In a first step we initialize the hand pose using a part-based model, fitting a set of hand components in the depth images. In a second step we consider temporal data and estimate the parameters of a trained bilinear model consisting of shape and trajectory bases. We evaluate our approach on a new created synthetic hand dataset along with NYU and MSRA real datasets. Results demonstrate that the proposed method outperforms the most recent pose recovering approaches, including those based on CNNs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; 600.098 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MEC2018 |
Serial |
3203 |
|
Permanent link to this record |