|
Records |
Links |
|
Author |
Frederic Sampedro; Sergio Escalera; Anna Domenech; Ignasi Carrio |

|
|
Title |
Automatic Tumor Volume Segmentation in Whole-Body PET/CT Scans: A Supervised Learning Approach Source |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Journal of Medical Imaging and Health Informatics |
Abbreviated Journal |
JMIHI |
|
|
Volume  |
5 |
Issue |
2 |
Pages |
192-201 |
|
|
Keywords |
CONTEXTUAL CLASSIFICATION; PET/CT; SUPERVISED LEARNING; TUMOR SEGMENTATION; WHOLE BODY |
|
|
Abstract |
Whole-body 3D PET/CT tumoral volume segmentation provides relevant diagnostic and prognostic information in clinical oncology and nuclear medicine. Carrying out this procedure manually by a medical expert is time consuming and suffers from inter- and intra-observer variabilities. In this paper, a completely automatic approach to this task is presented. First, the problem is stated and described both in clinical and technological terms. Then, a novel supervised learning segmentation framework is introduced. The segmentation by learning approach is defined within a Cascade of Adaboost classifiers and a 3D contextual proposal of Multiscale Stacked Sequential Learning. Segmentation accuracy results on 200 Breast Cancer whole body PET/CT volumes show mean 49% sensitivity, 99.993% specificity and 39% Jaccard overlap Index, which represent good performance results both at the clinical and technological level. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ SED2015 |
Serial |
2584 |
|
Permanent link to this record |
|
|
|
|
Author |
Marc Oliu; Ciprian Corneanu; Kamal Nasrollahi; Olegs Nikisins; Sergio Escalera; Yunlian Sun; Haiqing Li; Zhenan Sun; Thomas B. Moeslund; Modris Greitans |

|
|
Title |
Improved RGB-D-T based Face Recognition |
Type |
Journal Article |
|
Year |
2016 |
Publication |
IET Biometrics |
Abbreviated Journal |
BIO |
|
|
Volume  |
5 |
Issue |
4 |
Pages |
297 - 303 |
|
|
Keywords |
|
|
|
Abstract |
Reliable facial recognition systems are of crucial importance in various applications from entertainment to security. Thanks to the deep-learning concepts introduced in the field, a significant improvement in the performance of the unimodal facial recognition systems has been observed in the recent years. At the same time a multimodal facial recognition is a promising approach. This study combines the latest successes in both directions by applying deep learning convolutional neural networks (CNN) to the multimodal RGB, depth, and thermal (RGB-D-T) based facial recognition problem outperforming previously published results. Furthermore, a late fusion of the CNN-based recognition block with various hand-crafted features (local binary patterns, histograms of oriented gradients, Haar-like rectangular features, histograms of Gabor ordinal measures) is introduced, demonstrating even better recognition performance on a benchmark RGB-D-T database. The obtained results in this study show that the classical engineered features and CNN-based features can complement each other for recognition purposes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @ OCN2016 |
Serial |
2854 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Pujol; Petia Radeva |

|
|
Title |
Texture Segmentation by Statistical Deformable Models |
Type |
Journal |
|
Year |
2004 |
Publication |
International Journal of Image and Graphics |
Abbreviated Journal |
IJIG |
|
|
Volume  |
4 |
Issue |
3 |
Pages |
433-452 |
|
|
Keywords |
Texture segmentation, parametric active contours, statistic snakes |
|
|
Abstract |
Deformable models have received much popularity due to their ability to include high-level knowledge on the application domain into low-level image processing. Still, most proposed active contour models do not sufficiently profit from the application information and they are too generalized, leading to non-optimal final results of segmentation, tracking or 3D reconstruction processes. In this paper we propose a new deformable model defined in a statistical framework to segment objects of natural scenes. We perform a supervised learning of local appearance of the textured objects and construct a feature space using a set of co-occurrence matrix measures. Linear Discriminant Analysis allows us to obtain an optimal reduced feature space where a mixture model is applied to construct a likelihood map. Instead of using a heuristic potential field, our active model is deformed on a regularized version of the likelihood map in order to segment objects characterized by the same texture pattern. Different tests on synthetic images, natural scene and medical images show the advantages of our statistic deformable model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ PuR2004a |
Serial |
505 |
|
Permanent link to this record |
|
|
|
|
Author |
Antonio Hernandez; Nadezhda Zlateva; Alexander Marinov; Miguel Reyes; Petia Radeva; Dimo Dimov; Sergio Escalera |


|
|
Title |
Human Limb Segmentation in Depth Maps based on Spatio-Temporal Graph Cuts Optimization |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Journal of Ambient Intelligence and Smart Environments |
Abbreviated Journal |
JAISE |
|
|
Volume  |
4 |
Issue |
6 |
Pages |
535-546 |
|
|
Keywords |
Multi-modal vision processing; Random Forest; Graph-cuts; multi-label segmentation; human body segmentation |
|
|
Abstract |
We present a framework for object segmentation using depth maps based on Random Forest and Graph-cuts theory, and apply it to the segmentation of human limbs. First, from a set of random depth features, Random Forest is used to infer a set of label probabilities for each data sample. This vector of probabilities is used as unary term in α−β swap Graph-cuts algorithm. Moreover, depth values of spatio-temporal neighboring data points are used as boundary potentials. Results on a new multi-label human depth data set show high performance in terms of segmentation overlapping of the novel methodology compared to classical approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1876-1364 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ HZM2012a |
Serial |
2006 |
|
Permanent link to this record |
|
|
|
|
Author |
Victor Ponce; Mario Gorga; Xavier Baro; Petia Radeva; Sergio Escalera |

|
|
Title |
Análisis de la expresión oral y gestual en proyectos fin de carrera vía un sistema de visión artificial |
Type |
Journal Article |
|
Year |
2011 |
Publication |
ReVisión |
Abbreviated Journal |
|
|
|
Volume  |
4 |
Issue |
1 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
La comunicación y expresión oral es una competencia de especial relevancia en el EEES. No obstante, en muchas enseñanzas superiores la puesta en práctica de esta competencia ha sido relegada principalmente a la presentación de proyectos fin de carrera. Dentro de un proyecto de innovación docente, se ha desarrollado una herramienta informática para la extracción de información objetiva para el análisis de la expresión oral y gestual de los alumnos. El objetivo es dar un “feedback” a los estudiantes que les permita mejorar la calidad de sus presentaciones. El prototipo inicial que se presenta en este trabajo permite extraer de forma automática información audiovisual y analizarla mediante técnicas de aprendizaje. El sistema ha sido aplicado a 15 proyectos fin de carrera y 15 exposiciones dentro de una asignatura de cuarto curso. Los resultados obtenidos muestran la viabilidad del sistema para sugerir factores que ayuden tanto en el éxito de la comunicación así como en los criterios de evaluación. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1989-1199 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; MILAB;MV;OR |
Approved |
no |
|
|
Call Number |
Admin @ si @ PGB2011d |
Serial |
2514 |
|
Permanent link to this record |