toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Yunan Li; Jun Wan; Qiguang Miao; Sergio Escalera; Huijuan Fang; Huizhou Chen; Xiangda Qi; Guodong Guo edit  url
openurl 
  Title CR-Net: A Deep Classification-Regression Network for Multimodal Apparent Personality Analysis Type Journal Article
  Year 2020 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume (down) 128 Issue Pages 2763–2780  
  Keywords  
  Abstract First impressions strongly influence social interactions, having a high impact in the personal and professional life. In this paper, we present a deep Classification-Regression Network (CR-Net) for analyzing the Big Five personality problem and further assisting on job interview recommendation in a first impressions setup. The setup is based on the ChaLearn First Impressions dataset, including multimodal data with video, audio, and text converted from the corresponding audio data, where each person is talking in front of a camera. In order to give a comprehensive prediction, we analyze the videos from both the entire scene (including the person’s motions and background) and the face of the person. Our CR-Net first performs personality trait classification and applies a regression later, which can obtain accurate predictions for both personality traits and interview recommendation. Furthermore, we present a new loss function called Bell Loss to address inaccurate predictions caused by the regression-to-the-mean problem. Extensive experiments on the First Impressions dataset show the effectiveness of our proposed network, outperforming the state-of-the-art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona;MILAB Approved no  
  Call Number Admin @ si @ LWM2020 Serial 3413  
Permanent link to this record
 

 
Author Sergio Escalera; Jordi Gonzalez; Hugo Jair Escalante; Xavier Baro; Isabelle Guyon edit  url
openurl 
  Title Looking at People Special Issue Type Journal Article
  Year 2018 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume (down) 126 Issue 2-4 Pages 141-143  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; ISE; 600.119;MV;OR;MILAB Approved no  
  Call Number Admin @ si @ EGJ2018 Serial 3093  
Permanent link to this record
 

 
Author Cristina Palmero; Jordi Esquirol; Vanessa Bayo; Miquel Angel Cos; Pouya Ahmadmonfared; Joan Salabert; David Sanchez; Sergio Escalera edit   pdf
doi  openurl
  Title Automatic Sleep System Recommendation by Multi-modal RBG-Depth-Pressure Anthropometric Analysis Type Journal Article
  Year 2017 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume (down) 122 Issue 2 Pages 212–227  
  Keywords Sleep system recommendation; RGB-Depth data Pressure imaging; Anthropometric landmark extraction; Multi-part human body segmentation  
  Abstract This paper presents a novel system for automatic sleep system recommendation using RGB, depth and pressure information. It consists of a validated clinical knowledge-based model that, along with a set of prescription variables extracted automatically, obtains a personalized bed design recommendation. The automatic process starts by performing multi-part human body RGB-D segmentation combining GrabCut, 3D Shape Context descriptor and Thin Plate Splines, to then extract a set of anthropometric landmark points by applying orthogonal plates to the segmented human body. The extracted variables are introduced to the computerized clinical model to calculate body circumferences, weight, morphotype and Body Mass Index categorization. Furthermore, pressure image analysis is performed to extract pressure values and at-risk points, which are also introduced to the model to eventually obtain the final prescription of mattress, topper, and pillow. We validate the complete system in a set of 200 subjects, showing accurate category classification and high correlation results with respect to manual measures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; 303.100 Approved no  
  Call Number Admin @ si @ PEB2017 Serial 2765  
Permanent link to this record
 

 
Author Xavier Perez Sala; Fernando De la Torre; Laura Igual; Sergio Escalera; Cecilio Angulo edit  url
openurl 
  Title Subspace Procrustes Analysis Type Journal Article
  Year 2017 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume (down) 121 Issue 3 Pages 327–343  
  Keywords  
  Abstract Procrustes Analysis (PA) has been a popular technique to align and build 2-D statistical models of shapes. Given a set of 2-D shapes PA is applied to remove rigid transformations. Then, a non-rigid 2-D model is computed by modeling (e.g., PCA) the residual. Although PA has been widely used, it has several limitations for modeling 2-D shapes: occluded landmarks and missing data can result in local minima solutions, and there is no guarantee that the 2-D shapes provide a uniform sampling of the 3-D space of rotations for the object. To address previous issues, this paper proposes Subspace PA (SPA). Given several
instances of a 3-D object, SPA computes the mean and a 2-D subspace that can simultaneously model all rigid and non-rigid deformations of the 3-D object. We propose a discrete (DSPA) and continuous (CSPA) formulation for SPA, assuming that 3-D samples of an object are provided. DSPA extends the traditional PA, and produces unbiased 2-D models by uniformly sampling different views of the 3-D object. CSPA provides a continuous approach to uniformly sample the space of 3-D rotations, being more efficient in space and time. Experiments using SPA to learn 2-D models of bodies from motion capture data illustrate the benefits of our approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; HuPBA; no proj Approved no  
  Call Number Admin @ si @ PTI2017 Serial 2841  
Permanent link to this record
 

 
Author Antonio Hernandez; Sergio Escalera; Stan Sclaroff edit  doi
openurl 
  Title Poselet-basedContextual Rescoring for Human Pose Estimation via Pictorial Structures Type Journal Article
  Year 2016 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume (down) 118 Issue 1 Pages 49–64  
  Keywords Contextual rescoring; Poselets; Human pose estimation  
  Abstract In this paper we propose a contextual rescoring method for predicting the position of body parts in a human pose estimation framework. A set of poselets is incorporated in the model, and their detections are used to extract spatial and score-related features relative to other body part hypotheses. A method is proposed for the automatic discovery of a compact subset of poselets that covers the different poses in a set of validation images while maximizing precision. A rescoring mechanism is defined as a set-based boosting classifier that computes a new score for each body joint detection, given its relationship to detections of other body joints and mid-level parts in the image. This new score is incorporated in the pictorial structure model as an additional unary potential, following the recent work of Pishchulin et al. Experiments on two benchmarks show comparable results to Pishchulin et al. while reducing the size of the mid-level representation by an order of magnitude, reducing the execution time by 68 % accordingly.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ HES2016 Serial 2719  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: