toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (down)
Author Sergio Escalera; Alicia Fornes; Oriol Pujol; Josep Llados; Petia Radeva edit  doi
openurl 
  Title Circular Blurred Shape Model for Multiclass Symbol Recognition Type Journal Article
  Year 2011 Publication IEEE Transactions on Systems, Man and Cybernetics (Part B) (IEEE) Abbreviated Journal TSMCB  
  Volume 41 Issue 2 Pages 497-506  
  Keywords  
  Abstract In this paper, we propose a circular blurred shape model descriptor to deal with the problem of symbol detection and classification as a particular case of object recognition. The feature extraction is performed by capturing the spatial arrangement of significant object characteristics in a correlogram structure. The shape information from objects is shared among correlogram regions, where a prior blurring degree defines the level of distortion allowed in the symbol, making the descriptor tolerant to irregular deformations. Moreover, the descriptor is rotation invariant by definition. We validate the effectiveness of the proposed descriptor in both the multiclass symbol recognition and symbol detection domains. In order to perform the symbol detection, the descriptors are learned using a cascade of classifiers. In the case of multiclass categorization, the new feature space is learned using a set of binary classifiers which are embedded in an error-correcting output code design. The results over four symbol data sets show the significant improvements of the proposed descriptor compared to the state-of-the-art descriptors. In particular, the results are even more significant in those cases where the symbols suffer from elastic deformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1083-4419 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; DAG;HuPBA Approved no  
  Call Number Admin @ si @ EFP2011 Serial 1784  
Permanent link to this record
 

 
Author Swathikiran Sudhakaran; Sergio Escalera; Oswald Lanz edit   pdf
doi  openurl
  Title Gate-Shift-Fuse for Video Action Recognition Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 9 Pages 10913-10928  
  Keywords Action Recognition; Video Classification; Spatial Gating; Channel Fusion  
  Abstract Convolutional Neural Networks are the de facto models for image recognition. However 3D CNNs, the straight forward extension of 2D CNNs for video recognition, have not achieved the same success on standard action recognition benchmarks. One of the main reasons for this reduced performance of 3D CNNs is the increased computational complexity requiring large scale annotated datasets to train them in scale. 3D kernel factorization approaches have been proposed to reduce the complexity of 3D CNNs. Existing kernel factorization approaches follow hand-designed and hard-wired techniques. In this paper we propose Gate-Shift-Fuse (GSF), a novel spatio-temporal feature extraction module which controls interactions in spatio-temporal decomposition and learns to adaptively route features through time and combine them in a data dependent manner. GSF leverages grouped spatial gating to decompose input tensor and channel weighting to fuse the decomposed tensors. GSF can be inserted into existing 2D CNNs to convert them into an efficient and high performing spatio-temporal feature extractor, with negligible parameter and compute overhead. We perform an extensive analysis of GSF using two popular 2D CNN families and achieve state-of-the-art or competitive performance on five standard action recognition benchmarks.  
  Address 1 Sept. 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ SEL2023 Serial 3814  
Permanent link to this record
 

 
Author Javier Selva; Anders S. Johansen; Sergio Escalera; Kamal Nasrollahi; Thomas B. Moeslund; Albert Clapes edit  doi
openurl 
  Title Video transformers: A survey Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 11 Pages 12922-12943  
  Keywords Artificial Intelligence; Computer Vision; Self-Attention; Transformers; Video Representations  
  Abstract Transformer models have shown great success handling long-range interactions, making them a promising tool for modeling video. However, they lack inductive biases and scale quadratically with input length. These limitations are further exacerbated when dealing with the high dimensionality introduced by the temporal dimension. While there are surveys analyzing the advances of Transformers for vision, none focus on an in-depth analysis of video-specific designs. In this survey, we analyze the main contributions and trends of works leveraging Transformers to model video. Specifically, we delve into how videos are handled at the input level first. Then, we study the architectural changes made to deal with video more efficiently, reduce redundancy, re-introduce useful inductive biases, and capture long-term temporal dynamics. In addition, we provide an overview of different training regimes and explore effective self-supervised learning strategies for video. Finally, we conduct a performance comparison on the most common benchmark for Video Transformers (i.e., action classification), finding them to outperform 3D ConvNets even with less computational complexity.  
  Address 1 Nov. 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ SJE2023 Serial 3823  
Permanent link to this record
 

 
Author Sergio Escalera; Jordi Gonzalez; Xavier Baro; Jamie Shotton edit  doi
openurl 
  Title Guest Editor Introduction to the Special Issue on Multimodal Human Pose Recovery and Behavior Analysis Type Journal Article
  Year 2016 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 28 Issue Pages 1489 - 1491  
  Keywords  
  Abstract The sixteen papers in this special section focus on human pose recovery and behavior analysis (HuPBA). This is one of the most challenging topics in computer vision, pattern analysis, and machine learning. It is of critical importance for application areas that include gaming, computer interaction, human robot interaction, security, commerce, assistive technologies and rehabilitation, sports, sign language recognition, and driver assistance technology, to mention just a few. In essence, HuPBA requires dealing with the articulated nature of the human body, changes in appearance due to clothing, and the inherent problems of clutter scenes, such as background artifacts, occlusions, and illumination changes. These papers represent the most recent research in this field, including new methods considering still images, image sequences, depth data, stereo vision, 3D vision, audio, and IMUs, among others.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE;MV; Approved no  
  Call Number Admin @ si @ Serial 2851  
Permanent link to this record
 

 
Author Ciprian Corneanu; Marc Oliu; Jeffrey F. Cohn; Sergio Escalera edit   pdf
doi  openurl
  Title Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History Type Journal Article
  Year 2016 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 28 Issue 8 Pages 1548-1568  
  Keywords Facial expression; affect; emotion recognition; RGB; 3D; thermal; multimodal  
  Abstract Facial expressions are an important way through which humans interact socially. Building a system capable of automatically recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions remains challenging and much research is needed about the way they relate to human affect. This paper presents a general overview of automatic RGB, 3D, thermal and multimodal facial expression analysis. We define a new taxonomy for the field, encompassing all steps from face detection to facial expression recognition, and describe and classify the state of the art methods accordingly. We also present the important datasets and the bench-marking of most influential methods. We conclude with a general discussion about trends, important questions and future lines of research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ COC2016 Serial 2718  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: