toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Andre Litvin; Kamal Nasrollahi; Sergio Escalera; Cagri Ozcinar; Thomas B. Moeslund; Gholamreza Anbarjafari edit  url
openurl 
  Title (up) A Novel Deep Network Architecture for Reconstructing RGB Facial Images from Thermal for Face Recognition Type Journal Article
  Year 2019 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 78 Issue 18 Pages 25259–25271  
  Keywords Fully convolutional networks; FusionNet; Thermal imaging; Face recognition  
  Abstract This work proposes a fully convolutional network architecture for RGB face image generation from a given input thermal face image to be applied in face recognition scenarios. The proposed method is based on the FusionNet architecture and increases robustness against overfitting using dropout after bridge connections, randomised leaky ReLUs (RReLUs), and orthogonal regularization. Furthermore, we propose to use a decoding block with resize convolution instead of transposed convolution to improve final RGB face image generation. To validate our proposed network architecture, we train a face classifier and compare its face recognition rate on the reconstructed RGB images from the proposed architecture, to those when reconstructing images with the original FusionNet, as well as when using the original RGB images. As a result, we are introducing a new architecture which leads to a more accurate network.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ LNE2019 Serial 3318  
Permanent link to this record
 

 
Author Gerard Canal; Sergio Escalera; Cecilio Angulo edit   pdf
doi  openurl
  Title (up) A Real-time Human-Robot Interaction system based on gestures for assistive scenarios Type Journal Article
  Year 2016 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 149 Issue Pages 65-77  
  Keywords Gesture recognition; Human Robot Interaction; Dynamic Time Warping; Pointing location estimation  
  Abstract Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to recognize gestures usually employed in human non-verbal communication is introduced, and an in-depth study of its usability is performed. The system deals with dynamic gestures such as waving or nodding which are recognized using a Dynamic Time Warping approach based on gesture specific features computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The pointed location is then estimated in order to detect candidate objects the user may refer to. When the pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or gestural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, which could present difficulties to do it by itself. The overall system — which is composed by a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. Then, a broad set of user tests has been completed, which allows to assess correct performance in terms of recognition rates, easiness of use and response times.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ CEA2016 Serial 2768  
Permanent link to this record
 

 
Author Xavier Perez Sala; Sergio Escalera; Cecilio Angulo; Jordi Gonzalez edit   pdf
doi  openurl
  Title (up) A survey on model based approaches for 2D and 3D visual human pose recovery Type Journal Article
  Year 2014 Publication Sensors Abbreviated Journal SENS  
  Volume 14 Issue 3 Pages 4189-4210  
  Keywords human pose recovery; human body modelling; behavior analysis; computer vision  
  Abstract Human Pose Recovery has been studied in the field of Computer Vision for the last 40 years. Several approaches have been reported, and significant improvements have been obtained in both data representation and model design. However, the problem of Human Pose Recovery in uncontrolled environments is far from being solved. In this paper, we define a general taxonomy to group model based approaches for Human Pose Recovery, which is composed of five main modules: appearance, viewpoint, spatial relations, temporal consistence, and behavior. Subsequently, a methodological comparison is performed following the proposed taxonomy, evaluating current SoA approaches in the aforementioned five group categories. As a result of this comparison, we discuss the main advantages and drawbacks of the reviewed literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE; 600.046; 600.063; 600.078;MILAB Approved no  
  Call Number Admin @ si @ PEA2014 Serial 2443  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  url
openurl 
  Title (up) A transformer model for boundary detection in continuous sign language Type Journal Article
  Year 2024 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume Issue Pages  
  Keywords  
  Abstract Sign Language Recognition (SLR) has garnered significant attention from researchers in recent years, particularly the intricate domain of Continuous Sign Language Recognition (CSLR), which presents heightened complexity compared to Isolated Sign Language Recognition (ISLR). One of the prominent challenges in CSLR pertains to accurately detecting the boundaries of isolated signs within a continuous video stream. Additionally, the reliance on handcrafted features in existing models poses a challenge to achieving optimal accuracy. To surmount these challenges, we propose a novel approach utilizing a Transformer-based model. Unlike traditional models, our approach focuses on enhancing accuracy while eliminating the need for handcrafted features. The Transformer model is employed for both ISLR and CSLR. The training process involves using isolated sign videos, where hand keypoint features extracted from the input video are enriched using the Transformer model. Subsequently, these enriched features are forwarded to the final classification layer. The trained model, coupled with a post-processing method, is then applied to detect isolated sign boundaries within continuous sign videos. The evaluation of our model is conducted on two distinct datasets, including both continuous signs and their corresponding isolated signs, demonstrates promising results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ RKE2024 Serial 4016  
Permanent link to this record
 

 
Author Andres Traumann; Gholamreza Anbarjafari; Sergio Escalera edit  doi
openurl 
  Title (up) Accurate 3D Measurement Using Optical Depth Information Type Journal Article
  Year 2015 Publication Electronic Letters Abbreviated Journal EL  
  Volume 51 Issue 18 Pages 1420-1422  
  Keywords  
  Abstract A novel three-dimensional measurement technique is proposed. The methodology consists in mapping from the screen coordinates reported by the optical camera to the real world, and integrating distance gradients from the beginning to the end point, while also minimising the error through fitting pixel locations to a smooth curve. The results demonstrate accuracy of less than half a centimetre using Microsoft Kinect II.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ TAE2015 Serial 2647  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: