toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Sergio Escalera; Oriol Pujol; Petia Radeva edit  url
openurl 
  Title (up) Error-Correcting Output Codes Library Type Journal Article
  Year 2010 Publication Journal of Machine Learning Research Abbreviated Journal JMLR  
  Volume 11 Issue Pages 661-664  
  Keywords  
  Abstract (Feb):661−664
In this paper, we present an open source Error-Correcting Output Codes (ECOC) library. The ECOC framework is a powerful tool to deal with multi-class categorization problems. This library contains both state-of-the-art coding (one-versus-one, one-versus-all, dense random, sparse random, DECOC, forest-ECOC, and ECOC-ONE) and decoding designs (hamming, euclidean, inverse hamming, laplacian, β-density, attenuated, loss-based, probabilistic kernel-based, and loss-weighted) with the parameters defined by the authors, as well as the option to include your own coding, decoding, and base classifier.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1532-4435 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HUPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ EPR2010c Serial 1286  
Permanent link to this record
 

 
Author Hugo Jair Escalante; Victor Ponce; Sergio Escalera; Xavier Baro; Alicia Morales-Reyes; Jose Martinez-Carranza edit   pdf
doi  openurl
  Title (up) Evolving weighting schemes for the Bag of Visual Words Type Journal Article
  Year 2017 Publication Neural Computing and Applications Abbreviated Journal Neural Computing and Applications  
  Volume 28 Issue 5 Pages 925–939  
  Keywords Bag of Visual Words; Bag of features; Genetic programming; Term-weighting schemes; Computer vision  
  Abstract The Bag of Visual Words (BoVW) is an established representation in computer vision. Taking inspiration from text mining, this representation has proved
to be very effective in many domains. However, in most cases, standard term-weighting schemes are adopted (e.g.,term-frequency or TF-IDF). It remains open the question of whether alternative weighting schemes could boost the
performance of methods based on BoVW. More importantly, it is unknown whether it is possible to automatically learn and determine effective weighting schemes from
scratch. This paper brings some light into both of these unknowns. On the one hand, we report an evaluation of the most common weighting schemes used in text mining, but rarely used in computer vision tasks. Besides, we propose an evolutionary algorithm capable of automatically learning weighting schemes for computer vision problems. We report empirical results of an extensive study in several computer vision problems. Results show the usefulness of the proposed method.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Springer  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA;MV; no menciona;OR;MILAB Approved no  
  Call Number Admin @ si @ EPE2017 Serial 2743  
Permanent link to this record
 

 
Author Julio C. S. Jacques Junior; Xavier Baro; Sergio Escalera edit   pdf
url  openurl
  Title (up) Exploiting feature representations through similarity learning, post-ranking and ranking aggregation for person re-identification Type Journal Article
  Year 2018 Publication Image and Vision Computing Abbreviated Journal IMAVIS  
  Volume 79 Issue Pages 76-85  
  Keywords  
  Abstract Person re-identification has received special attention by the human analysis community in the last few years. To address the challenges in this field, many researchers have proposed different strategies, which basically exploit either cross-view invariant features or cross-view robust metrics. In this work, we propose to exploit a post-ranking approach and combine different feature representations through ranking aggregation. Spatial information, which potentially benefits the person matching, is represented using a 2D body model, from which color and texture information are extracted and combined. We also consider background/foreground information, automatically extracted via Deep Decompositional Network, and the usage of Convolutional Neural Network (CNN) features. To describe the matching between images we use the polynomial feature map, also taking into account local and global information. The Discriminant Context Information Analysis based post-ranking approach is used to improve initial ranking lists. Finally, the Stuart ranking aggregation method is employed to combine complementary ranking lists obtained from different feature representations. Experimental results demonstrated that we improve the state-of-the-art on VIPeR and PRID450s datasets, achieving 67.21% and 75.64% on top-1 rank recognition rate, respectively, as well as obtaining competitive results on CUHK01 dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; 602.143;MV;OR;MILAB Approved no  
  Call Number Admin @ si @ JBE2018 Serial 3138  
Permanent link to this record
 

 
Author Carlo Gatta; Oriol Pujol; Oriol Rodriguez-Leor; J. M. Ferre; Petia Radeva edit  doi
openurl 
  Title (up) Fast Rigid Registration of Vascular Structures in IVUS Sequences Type Journal Article
  Year 2009 Publication IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal  
  Volume 13 Issue 6 Pages 106-1011  
  Keywords  
  Abstract Intravascular ultrasound (IVUS) technology permits visualization of high-resolution images of internal vascular structures. IVUS is a unique image-guiding tool to display longitudinal view of the vessels, and estimate the length and size of vascular structures with the goal of accurate diagnosis. Unfortunately, due to pulsatile contraction and expansion of the heart, the captured images are affected by different motion artifacts that make visual inspection difficult. In this paper, we propose an efficient algorithm that aligns vascular structures and strongly reduces the saw-shaped oscillation, simplifying the inspection of longitudinal cuts; it reduces the motion artifacts caused by the displacement of the catheter in the short-axis plane and the catheter rotation due to vessel tortuosity. The algorithm prototype aligns 3.16 frames/s and clearly outperforms state-of-the-art methods with similar computational cost. The speed of the algorithm is crucial since it allows to inspect the corrected sequence during patient intervention. Moreover, we improved an indirect methodology for IVUS rigid registration algorithm evaluation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1089-7771 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ GPL2009 Serial 1250  
Permanent link to this record
 

 
Author Julio C. S. Jacques Junior; Yagmur Gucluturk; Marc Perez; Umut Guçlu; Carlos Andujar; Xavier Baro; Hugo Jair Escalante; Isabelle Guyon; Marcel A. J. van Gerven; Rob van Lier; Sergio Escalera edit  doi
openurl 
  Title (up) First Impressions: A Survey on Vision-Based Apparent Personality Trait Analysis Type Journal Article
  Year 2022 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 13 Issue 1 Pages 75-95  
  Keywords Personality computing; first impressions; person perception; big-five; subjective bias; computer vision; machine learning; nonverbal signals; facial expression; gesture; speech analysis; multi-modal recognition  
  Abstract Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.  
  Address 1 Jan.-March 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MV;OR;MILAB Approved no  
  Call Number Admin @ si @ JGP2022 Serial 3724  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: