|
Records |
Links |
|
Author |
Huamin Ren; Nattiya Kanhabua; Andreas Mogelmose; Weifeng Liu; Kaustubh Kulkarni; Sergio Escalera; Xavier Baro; Thomas B. Moeslund |
|
|
Title |
Back-dropout Transfer Learning for Action Recognition |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IET Computer Vision |
Abbreviated Journal |
IETCV |
|
|
Volume |
12 |
Issue |
4 |
Pages |
484-491 |
|
|
Keywords |
Learning (artificial intelligence); Pattern Recognition |
|
|
Abstract |
Transfer learning aims at adapting a model learned from source dataset to target dataset. It is a beneficial approach especially when annotating on the target dataset is expensive or infeasible. Transfer learning has demonstrated its powerful learning capabilities in various vision tasks. Despite transfer learning being a promising approach, it is still an open question how to adapt the model learned from the source dataset to the target dataset. One big challenge is to prevent the impact of category bias on classification performance. Dataset bias exists when two images from the same category, but from different datasets, are not classified as the same. To address this problem, a transfer learning algorithm has been proposed, called negative back-dropout transfer learning (NB-TL), which utilizes images that have been misclassified and further performs back-dropout strategy on them to penalize errors. Experimental results demonstrate the effectiveness of the proposed algorithm. In particular, the authors evaluate the performance of the proposed NB-TL algorithm on UCF 101 action recognition dataset, achieving 88.9% recognition rate. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MV;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKM2018 |
Serial |
3071 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Angel Bautista; Oriol Pujol; Fernando De la Torre; Sergio Escalera |
|
|
Title |
Error-Correcting Factorization |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
40 |
Issue |
|
Pages |
2388-2401 |
|
|
Keywords |
|
|
|
Abstract |
Error Correcting Output Codes (ECOC) is a successful technique in multi-class classification, which is a core problem in Pattern Recognition and Machine Learning. A major advantage of ECOC over other methods is that the multi- class problem is decoupled into a set of binary problems that are solved independently. However, literature defines a general error-correcting capability for ECOCs without analyzing how it distributes among classes, hindering a deeper analysis of pair-wise error-correction. To address these limitations this paper proposes an Error-Correcting Factorization (ECF) method, our contribution is three fold: (I) We propose a novel representation of the error-correction capability, called the design matrix, that enables us to build an ECOC on the basis of allocating correction to pairs of classes. (II) We derive the optimal code length of an ECOC using rank properties of the design matrix. (III) ECF is formulated as a discrete optimization problem, and a relaxed solution is found using an efficient constrained block coordinate descent approach. (IV) Enabled by the flexibility introduced with the design matrix we propose to allocate the error-correction on classes that are prone to confusion. Experimental results in several databases show that when allocating the error-correction to confusable classes ECF outperforms state-of-the-art approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no menciona;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ BPT2018 |
Serial |
3015 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera; Huamin Ren; Thomas B. Moeslund; Elham Etemad |
|
|
Title |
Locality Regularized Group Sparse Coding for Action Recognition |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Computer Vision and Image Understanding |
Abbreviated Journal |
CVIU |
|
|
Volume |
158 |
Issue |
|
Pages |
106-114 |
|
|
Keywords |
Bag of words; Feature encoding; Locality constrained coding; Group sparse coding; Alternating direction method of multipliers; Action recognition |
|
|
Abstract |
Bag of visual words (BoVW) models are widely utilized in image/ video representation and recognition. The cornerstone of these models is the encoding stage, in which local features are decomposed over a codebook in order to obtain a representation of features. In this paper, we propose a new encoding algorithm by jointly encoding the set of local descriptors of each sample and considering the locality structure of descriptors. The proposed method takes advantages of locality coding such as its stability and robustness to noise in descriptors, as well as the strengths of the group coding strategy by taking into account the potential relation among descriptors of a sample. To efficiently implement our proposed method, we consider the Alternating Direction Method of Multipliers (ADMM) framework, which results in quadratic complexity in the problem size. The method is employed for a challenging classification problem: action recognition by depth cameras. Experimental results demonstrate the outperformance of our methodology compared to the state-of-the-art on the considered datasets. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGE2017 |
Serial |
3014 |
|
Permanent link to this record |
|
|
|
|
Author |
Fatemeh Noroozi; Marina Marjanovic; Angelina Njegus; Sergio Escalera; Gholamreza Anbarjafari |
|
|
Title |
Audio-Visual Emotion Recognition in Video Clips |
Type |
Journal Article |
|
Year |
2019 |
Publication |
IEEE Transactions on Affective Computing |
Abbreviated Journal |
TAC |
|
|
Volume |
10 |
Issue |
1 |
Pages |
60-75 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a multimodal emotion recognition system, which is based on the analysis of audio and visual cues. From the audio channel, Mel-Frequency Cepstral Coefficients, Filter Bank Energies and prosodic features are extracted. For the visual part, two strategies are considered. First, facial landmarks’ geometric relations, i.e. distances and angles, are computed. Second, we summarize each emotional video into a reduced set of key-frames, which are taught to visually discriminate between the emotions. In order to do so, a convolutional neural network is applied to key-frames summarizing videos. Finally, confidence outputs of all the classifiers from all the modalities are used to define a new feature space to be learned for final emotion label prediction, in a late fusion/stacking fashion. The experiments conducted on the SAVEE, eNTERFACE’05, and RML databases show significant performance improvements by our proposed system in comparison to current alternatives, defining the current state-of-the-art in all three databases. |
|
|
Address |
1 Jan.-March 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; 602.143; 602.133;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ NMN2017 |
Serial |
3011 |
|
Permanent link to this record |
|
|
|
|
Author |
Jordi Esquirol; Cristina Palmero; Vanessa Bayo; Miquel Angel Cos; Sergio Escalera; David Sanchez; Maider Sanchez; Noelia Serrano; Mireia Relats |
|
|
Title |
Automatic RBG-depth-pressure anthropometric analysis and individualised sleep solution prescription |
Type |
Journal |
|
Year |
2017 |
Publication |
Journal of Medical Engineering & Technology |
Abbreviated Journal |
JMET |
|
|
Volume |
41 |
Issue |
6 |
Pages |
486-497 |
|
|
Keywords |
|
|
|
Abstract |
INTRODUCTION:
Sleep surfaces must adapt to individual somatotypic features to maintain a comfortable, convenient and healthy sleep, preventing diseases and injuries. Individually determining the most adequate rest surface can often be a complex and subjective question.
OBJECTIVES:
To design and validate an automatic multimodal somatotype determination model to automatically recommend an individually designed mattress-topper-pillow combination.
METHODS:
Design and validation of an automated prescription model for an individualised sleep system is performed through a single-image 2 D-3 D analysis and body pressure distribution, to objectively determine optimal individual sleep surfaces combining five different mattress densities, three different toppers and three cervical pillows.
RESULTS:
A final study (n = 151) and re-analysis (n = 117) defined and validated the model, showing high correlations between calculated and real data (>85% in height and body circumferences, 89.9% in weight, 80.4% in body mass index and more than 70% in morphotype categorisation).
CONCLUSIONS:
Somatotype determination model can accurately prescribe an individualised sleep solution. This can be useful for healthy people and for health centres that need to adapt sleep surfaces to people with special needs. Next steps will increase model's accuracy and analise, if this prescribed individualised sleep solution can improve sleep quantity and quality; additionally, future studies will adapt the model to mattresses with technological improvements, tailor-made production and will define interfaces for people with special needs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no menciona;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ EPB2017 |
Serial |
3010 |
|
Permanent link to this record |