|
Records |
Links |
|
Author |
Sergio Escalera; Vassilis Athitsos; Isabelle Guyon |
|
|
Title |
Challenges in multimodal gesture recognition |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Journal of Machine Learning Research |
Abbreviated Journal |
JMLR |
|
|
Volume |
17 |
Issue |
|
Pages |
1-54 |
|
|
Keywords |
Gesture Recognition; Time Series Analysis; Multimodal Data Analysis; Computer Vision; Pattern Recognition; Wearable sensors; Infrared Cameras; KinectTM |
|
|
Abstract |
This paper surveys the state of the art on multimodal gesture recognition and introduces the JMLR special topic on gesture recognition 2011-2015. We began right at the start of the KinectTMrevolution when inexpensive infrared cameras providing image depth recordings became available. We published papers using this technology and other more conventional methods, including regular video cameras, to record data, thus providing a good overview of uses of machine learning and computer vision using multimodal data in this area of application. Notably, we organized a series of challenges and made available several datasets we recorded for that purpose, including tens of thousands
of videos, which are available to conduct further research. We also overview recent state of the art works on gesture recognition based on a proposed taxonomy for gesture recognition, discussing challenges and future lines of research. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
Zhuowen Tu |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @ EAG2016 |
Serial |
2764 |
|
Permanent link to this record |
|
|
|
|
Author |
Cristina Palmero; Jordi Esquirol; Vanessa Bayo; Miquel Angel Cos; Pouya Ahmadmonfared; Joan Salabert; David Sanchez; Sergio Escalera |
|
|
Title |
Automatic Sleep System Recommendation by Multi-modal RBG-Depth-Pressure Anthropometric Analysis |
Type |
Journal Article |
|
Year |
2017 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
122 |
Issue |
2 |
Pages |
212–227 |
|
|
Keywords |
Sleep system recommendation; RGB-Depth data Pressure imaging; Anthropometric landmark extraction; Multi-part human body segmentation |
|
|
Abstract |
This paper presents a novel system for automatic sleep system recommendation using RGB, depth and pressure information. It consists of a validated clinical knowledge-based model that, along with a set of prescription variables extracted automatically, obtains a personalized bed design recommendation. The automatic process starts by performing multi-part human body RGB-D segmentation combining GrabCut, 3D Shape Context descriptor and Thin Plate Splines, to then extract a set of anthropometric landmark points by applying orthogonal plates to the segmented human body. The extracted variables are introduced to the computerized clinical model to calculate body circumferences, weight, morphotype and Body Mass Index categorization. Furthermore, pressure image analysis is performed to extract pressure values and at-risk points, which are also introduced to the model to eventually obtain the final prescription of mattress, topper, and pillow. We validate the complete system in a set of 200 subjects, showing accurate category classification and high correlation results with respect to manual measures. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; 303.100 |
Approved |
no |
|
|
Call Number |
Admin @ si @ PEB2017 |
Serial |
2765 |
|
Permanent link to this record |
|
|
|
|
Author |
Pejman Rasti; Salma Samiei; Mary Agoyi; Sergio Escalera; Gholamreza Anbarjafari |
|
|
Title |
Robust non-blind color video watermarking using QR decomposition and entropy analysis |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Journal of Visual Communication and Image Representation |
Abbreviated Journal |
JVCIR |
|
|
Volume |
38 |
Issue |
|
Pages |
838-847 |
|
|
Keywords |
Video watermarking; QR decomposition; Discrete Wavelet Transformation; Chirp Z-transform; Singular value decomposition; Orthogonal–triangular decomposition |
|
|
Abstract |
Issues such as content identification, document and image security, audience measurement, ownership and copyright among others can be settled by the use of digital watermarking. Many recent video watermarking methods show drops in visual quality of the sequences. The present work addresses the aforementioned issue by introducing a robust and imperceptible non-blind color video frame watermarking algorithm. The method divides frames into moving and non-moving parts. The non-moving part of each color channel is processed separately using a block-based watermarking scheme. Blocks with an entropy lower than the average entropy of all blocks are subject to a further process for embedding the watermark image. Finally a watermarked frame is generated by adding moving parts to it. Several signal processing attacks are applied to each watermarked frame in order to perform experiments and are compared with some recent algorithms. Experimental results show that the proposed scheme is imperceptible and robust against common signal processing attacks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @RSA2016 |
Serial |
2766 |
|
Permanent link to this record |
|
|
|
|
Author |
Xavier Perez Sala; Fernando De la Torre; Laura Igual; Sergio Escalera; Cecilio Angulo |
|
|
Title |
Subspace Procrustes Analysis |
Type |
Journal Article |
|
Year |
2017 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
121 |
Issue |
3 |
Pages |
327–343 |
|
|
Keywords |
|
|
|
Abstract |
Procrustes Analysis (PA) has been a popular technique to align and build 2-D statistical models of shapes. Given a set of 2-D shapes PA is applied to remove rigid transformations. Then, a non-rigid 2-D model is computed by modeling (e.g., PCA) the residual. Although PA has been widely used, it has several limitations for modeling 2-D shapes: occluded landmarks and missing data can result in local minima solutions, and there is no guarantee that the 2-D shapes provide a uniform sampling of the 3-D space of rotations for the object. To address previous issues, this paper proposes Subspace PA (SPA). Given several
instances of a 3-D object, SPA computes the mean and a 2-D subspace that can simultaneously model all rigid and non-rigid deformations of the 3-D object. We propose a discrete (DSPA) and continuous (CSPA) formulation for SPA, assuming that 3-D samples of an object are provided. DSPA extends the traditional PA, and produces unbiased 2-D models by uniformly sampling different views of the 3-D object. CSPA provides a continuous approach to uniformly sample the space of 3-D rotations, being more efficient in space and time. Experiments using SPA to learn 2-D models of bodies from motion capture data illustrate the benefits of our approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB; HuPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ PTI2017 |
Serial |
2841 |
|
Permanent link to this record |
|
|
|
|
Author |
Frederic Sampedro; Anna Domenech; Sergio Escalera; Ignasi Carrio |
|
|
Title |
Computing quantitative indicators of structural renal damage in pediatric DMSA scans |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Revista Española de Medicina Nuclear e Imagen Molecular |
Abbreviated Journal |
REMNIM |
|
|
Volume |
36 |
Issue |
2 |
Pages |
72-77 |
|
|
Keywords |
|
|
|
Abstract |
OBJECTIVES:
The proposal and implementation of a computational framework for the quantification of structural renal damage from 99mTc-dimercaptosuccinic acid (DMSA) scans. The aim of this work is to propose, implement, and validate a computational framework for the quantification of structural renal damage from DMSA scans and in an observer-independent manner.
MATERIALS AND METHODS:
From a set of 16 pediatric DMSA-positive scans and 16 matched controls and using both expert-guided and automatic approaches, a set of image-derived quantitative indicators was computed based on the relative size, intensity and histogram distribution of the lesion. A correlation analysis was conducted in order to investigate the association of these indicators with other clinical data of interest in this scenario, including C-reactive protein (CRP), white cell count, vesicoureteral reflux, fever, relative perfusion, and the presence of renal sequelae in a 6-month follow-up DMSA scan.
RESULTS:
A fully automatic lesion detection and segmentation system was able to successfully classify DMSA-positive from negative scans (AUC=0.92, sensitivity=81% and specificity=94%). The image-computed relative size of the lesion correlated with the presence of fever and CRP levels (p<0.05), and a measurement derived from the distribution histogram of the lesion obtained significant performance results in the detection of permanent renal damage (AUC=0.86, sensitivity=100% and specificity=75%).
CONCLUSIONS:
The proposal and implementation of a computational framework for the quantification of structural renal damage from DMSA scans showed a promising potential to complement visual diagnosis and non-imaging indicators. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; no menciona |
Approved |
no |
|
|
Call Number |
Admin @ si @ SDE2017 |
Serial |
2842 |
|
Permanent link to this record |