|
Records |
Links |
|
Author |
Miguel Angel Bautista; Antonio Hernandez; Sergio Escalera; Laura Igual; Oriol Pujol; Josep Moya; Veronica Violant; Maria Teresa Anguera |
|
|
Title |
A Gesture Recognition System for Detecting Behavioral Patterns of ADHD |
Type |
Journal Article |
|
Year |
2016 |
Publication |
IEEE Transactions on System, Man and Cybernetics, Part B |
Abbreviated Journal |
TSMCB |
|
|
Volume |
46 |
Issue |
1 |
Pages |
136-147 |
|
|
Keywords |
Gesture Recognition; ADHD; Gaussian Mixture Models; Convex Hulls; Dynamic Time Warping; Multi-modal RGB-Depth data |
|
|
Abstract |
We present an application of gesture recognition using an extension of Dynamic Time Warping (DTW) to recognize behavioural patterns of Attention Deficit Hyperactivity Disorder (ADHD). We propose an extension of DTW using one-class classifiers in order to be able to encode the variability of a gesture category, and thus, perform an alignment between a gesture sample and a gesture class. We model the set of gesture samples of a certain gesture category using either GMMs or an approximation of Convex Hulls. Thus, we add a theoretical contribution to classical warping path in DTW by including local modeling of intra-class gesture variability. This methodology is applied in a clinical context, detecting a group of ADHD behavioural patterns defined by experts in psychology/psychiatry, to provide support to clinicians in the diagnose procedure. The proposed methodology is tested on a novel multi-modal dataset (RGB plus Depth) of ADHD children recordings with behavioural patterns. We obtain satisfying results when compared to standard state-of-the-art approaches in the DTW context. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @ BHE2016 |
Serial |
2566 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Pujol; Petia Radeva; Jordi Vitria |
|
|
Title |
Discriminant ECOC: A Heuristic Method for Application Dependent Design of Error Correcting Output Codes |
Type |
Journal |
|
Year |
2006 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(6): 1007–1012 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
OR;MILAB;HuPBA;MV |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ PRV2006a |
Serial |
646 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Pujol; David Masip |
|
|
Title |
Geometry-Based Ensembles: Toward a Structural Characterization of the Classification Boundary |
Type |
Journal Article |
|
Year |
2009 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
31 |
Issue |
6 |
Pages |
1140–1146 |
|
|
Keywords |
|
|
|
Abstract |
This article introduces a novel binary discriminative learning technique based on the approximation of the non-linear decision boundary by a piece-wise linear smooth additive model. The decision border is geometrically defined by means of the characterizing boundary points – points that belong to the optimal boundary under a certain notion of robustness. Based on these points, a set of locally robust linear classifiers is defined and assembled by means of a Tikhonov regularized optimization procedure in an additive model to create a final lambda-smooth decision rule. As a result, a very simple and robust classifier with a strong geometrical meaning and non-linear behavior is obtained. The simplicity of the method allows its extension to cope with some of nowadays machine learning challenges, such as online learning, large scale learning or parallelization, with linear computational complexity. We validate our approach on the UCI database. Finally, we apply our technique in online and large scale scenarios, and in six real life computer vision and pattern recognition problems: gender recognition, intravascular ultrasound tissue classification, speed traffic sign detection, Chagas' disease severity detection, clef classification and action recognition using a 3D accelerometer data. The results are promising and this paper opens a line of research that deserves further attention |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
OR;HuPBA;MV;MILAB |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ PuM2009 |
Serial |
1252 |
|
Permanent link to this record |
|
|
|
|
Author |
Ciprian Corneanu; Marc Oliu; Jeffrey F. Cohn; Sergio Escalera |
|
|
Title |
Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History |
Type |
Journal Article |
|
Year |
2016 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
28 |
Issue |
8 |
Pages |
1548-1568 |
|
|
Keywords |
Facial expression; affect; emotion recognition; RGB; 3D; thermal; multimodal |
|
|
Abstract |
Facial expressions are an important way through which humans interact socially. Building a system capable of automatically recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions remains challenging and much research is needed about the way they relate to human affect. This paper presents a general overview of automatic RGB, 3D, thermal and multimodal facial expression analysis. We define a new taxonomy for the field, encompassing all steps from face detection to facial expression recognition, and describe and classify the state of the art methods accordingly. We also present the important datasets and the bench-marking of most influential methods. We conclude with a general discussion about trends, important questions and future lines of research. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @ COC2016 |
Serial |
2718 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Jordi Gonzalez; Xavier Baro; Jamie Shotton |
|
|
Title |
Guest Editor Introduction to the Special Issue on Multimodal Human Pose Recovery and Behavior Analysis |
Type |
Journal Article |
|
Year |
2016 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
28 |
Issue |
|
Pages |
1489 - 1491 |
|
|
Keywords |
|
|
|
Abstract |
The sixteen papers in this special section focus on human pose recovery and behavior analysis (HuPBA). This is one of the most challenging topics in computer vision, pattern analysis, and machine learning. It is of critical importance for application areas that include gaming, computer interaction, human robot interaction, security, commerce, assistive technologies and rehabilitation, sports, sign language recognition, and driver assistance technology, to mention just a few. In essence, HuPBA requires dealing with the articulated nature of the human body, changes in appearance due to clothing, and the inherent problems of clutter scenes, such as background artifacts, occlusions, and illumination changes. These papers represent the most recent research in this field, including new methods considering still images, image sequences, depth data, stereo vision, 3D vision, audio, and IMUs, among others. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; ISE;MV;;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
2851 |
|
Permanent link to this record |